本文整理汇总了Python中tflearn.layers.conv.max_pool_2d函数的典型用法代码示例。如果您正苦于以下问题:Python max_pool_2d函数的具体用法?Python max_pool_2d怎么用?Python max_pool_2d使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了max_pool_2d函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: alexnet
def alexnet():
X, Y = oxflower17.load_data(one_hot=True, resize_pics=(227, 227))
# Building 'AlexNet'
network = input_data(shape=[None, 227, 227, 3])
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 17, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=0.001)
# Training
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=2)
model.fit(X, Y, n_epoch=1000, validation_set=0.1, shuffle=True,
show_metric=True, batch_size=64, snapshot_step=200,
snapshot_epoch=False, run_id='alexnet')
示例2: createModel
def createModel(nbClasses,imageSize):
print("[+] Creating model...")
convnet = input_data(shape=[None, imageSize, imageSize, 1], name='input')
convnet = conv_2d(convnet, 64, 2, activation='elu', weights_init="Xavier")
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 128, 2, activation='elu', weights_init="Xavier")
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 256, 2, activation='elu', weights_init="Xavier")
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 512, 2, activation='elu', weights_init="Xavier")
convnet = max_pool_2d(convnet, 2)
convnet = fully_connected(convnet, 1024, activation='elu')
convnet = dropout(convnet, 0.5)
convnet = fully_connected(convnet, nbClasses, activation='softmax')
convnet = regression(convnet, optimizer='rmsprop', loss='categorical_crossentropy')
model = tflearn.DNN(convnet)
print(" Model created! ✅")
return model
示例3: cnn
def cnn():
X, Y, testX, testY = mnist.load_data(one_hot=True)
X = X.reshape([-1, 28, 28, 1])
testX = testX.reshape([-1, 28, 28, 1])
# Building convolutional network
network = input_data(shape=[None, 28, 28, 1], name='input')
network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = conv_2d(network, 64, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = fully_connected(network, 128, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 10, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.01,
loss='categorical_crossentropy', name='target')
# Training
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit({'input': X}, {'target': Y}, n_epoch=20,
validation_set=({'input': testX}, {'target': testY}),
snapshot_step=100, show_metric=True, run_id='cnn_demo')
示例4: build_network
def build_network(self):
# Building 'AlexNet'
# https://github.com/tflearn/tflearn/blob/master/examples/images/alexnet.py
# https://github.com/DT42/squeezenet_demo
# https://github.com/yhenon/pysqueezenet/blob/master/squeezenet.py
print('[+] Building CNN')
self.network = input_data(shape = [None, SIZE_FACE, SIZE_FACE, 1])
self.network = conv_2d(self.network, 96, 11, strides = 4, activation = 'relu')
self.network = max_pool_2d(self.network, 3, strides = 2)
self.network = local_response_normalization(self.network)
self.network = conv_2d(self.network, 256, 5, activation = 'relu')
self.network = max_pool_2d(self.network, 3, strides = 2)
self.network = local_response_normalization(self.network)
self.network = conv_2d(self.network, 256, 3, activation = 'relu')
self.network = max_pool_2d(self.network, 3, strides = 2)
self.network = local_response_normalization(self.network)
self.network = fully_connected(self.network, 1024, activation = 'tanh')
self.network = dropout(self.network, 0.5)
self.network = fully_connected(self.network, 1024, activation = 'tanh')
self.network = dropout(self.network, 0.5)
self.network = fully_connected(self.network, len(EMOTIONS), activation = 'softmax')
self.network = regression(self.network,
optimizer = 'momentum',
loss = 'categorical_crossentropy')
self.model = tflearn.DNN(
self.network,
checkpoint_path = SAVE_DIRECTORY + '/alexnet_mood_recognition',
max_checkpoints = 1,
tensorboard_verbose = 2
)
self.load_model()
示例5: model_for_type
def model_for_type(neural_net_type, tile_size, on_band_count):
"""The neural_net_type can be: one_layer_relu,
one_layer_relu_conv,
two_layer_relu_conv."""
network = tflearn.input_data(shape=[None, tile_size, tile_size, on_band_count])
# NN architectures mirror ch. 3 of www.cs.toronto.edu/~vmnih/docs/Mnih_Volodymyr_PhD_Thesis.pdf
if neural_net_type == "one_layer_relu":
network = tflearn.fully_connected(network, 64, activation="relu")
elif neural_net_type == "one_layer_relu_conv":
network = conv_2d(network, 64, 12, strides=4, activation="relu")
network = max_pool_2d(network, 3)
elif neural_net_type == "two_layer_relu_conv":
network = conv_2d(network, 64, 12, strides=4, activation="relu")
network = max_pool_2d(network, 3)
network = conv_2d(network, 128, 4, activation="relu")
else:
print("ERROR: exiting, unknown layer type for neural net")
# classify as road or not road
softmax = tflearn.fully_connected(network, 2, activation="softmax")
# hyperparameters based on www.cs.toronto.edu/~vmnih/docs/Mnih_Volodymyr_PhD_Thesis.pdf
momentum = tflearn.optimizers.Momentum(learning_rate=0.005, momentum=0.9, lr_decay=0.0002, name="Momentum")
net = tflearn.regression(softmax, optimizer=momentum, loss="categorical_crossentropy")
return tflearn.DNN(net, tensorboard_verbose=0)
示例6: _model1
def _model1():
global yTest, img_aug
tf.reset_default_graph()
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()
network = input_data(shape=[None, inputSize, inputSize, dim],
name='input',
data_preprocessing=img_prep,
data_augmentation=img_aug)
network = conv_2d(network, 32, 3, strides = 4, activation='relu')
network = max_pool_2d(network, 2, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 64, 3, strides = 2, activation='relu')
network = max_pool_2d(network, 2, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 128, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, len(Y[0]), activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy', name='target')
model = tflearn.DNN(network, tensorboard_verbose=3)
model.fit(X, Y, n_epoch=epochNum, validation_set=(xTest, yTest),
snapshot_step=500, show_metric=True, batch_size=batchNum, shuffle=True, run_id=_id + 'artClassification')
if modelStore: model.save(_id + '-model.tflearn')
示例7: train_nmf_network
def train_nmf_network(mfcc_array, sdr_array, n_epochs, take):
"""
:param mfcc_array:
:param sdr_array:
:param n_epochs:
:param take:
:return:
"""
with tf.Graph().as_default():
network = input_data(shape=[None, 13, 100, 1])
network = conv_2d(network, 32, [5, 5], activation="relu", regularizer="L2")
network = max_pool_2d(network, 2)
network = conv_2d(network, 64, [5, 5], activation="relu", regularizer="L2")
network = max_pool_2d(network, 2)
network = fully_connected(network, 128, activation="relu")
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation="relu")
network = dropout(network, 0.8)
network = fully_connected(network, 1, activation="linear")
regress = tflearn.regression(network, optimizer="rmsprop", loss="mean_square", learning_rate=0.001)
# Training
model = tflearn.DNN(regress) # , session=sess)
model.fit(
mfcc_array,
sdr_array,
n_epoch=n_epochs,
snapshot_step=1000,
show_metric=True,
run_id="repet_choice_{0}_epochs_take_{1}".format(n_epochs, take),
)
return model
示例8: alexnet
def alexnet(width, height, lr, output=3):
network = input_data(shape=[None, width, height, 1], name='input')
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例9: do_cnn_doc2vec_2d
def do_cnn_doc2vec_2d(trainX, testX, trainY, testY):
print "CNN and doc2vec 2d"
trainX = trainX.reshape([-1, max_features, max_document_length, 1])
testX = testX.reshape([-1, max_features, max_document_length, 1])
# Building convolutional network
network = input_data(shape=[None, max_features, max_document_length, 1], name='input')
network = conv_2d(network, 16, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = fully_connected(network, 128, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 10, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.01,
loss='categorical_crossentropy', name='target')
# Training
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit({'input': trainX}, {'target': trainY}, n_epoch=20,
validation_set=({'input': testX}, {'target': testY}),
snapshot_step=100, show_metric=True, run_id='review')
示例10: main
def main():
pickle_folder = '../pickles_rolloff'
pickle_folders_to_load = [f for f in os.listdir(pickle_folder) if os.path.isdir(join(pickle_folder, f))]
pickle_folders_to_load = sorted(pickle_folders_to_load)
# pickle parameters
fg_or_bg = 'background'
sdr_type = 'sdr'
feature = 'sim_mat'
beat_spec_len = 432
# training params
n_classes = 16
training_percent = 0.85
testing_percent = 0.15
validation_percent = 0.00
# set up training, testing, & validation partitions
print('Loading sim_mat and sdrs')
sim_mat_array, sdr_array = get_generated_data(feature, fg_or_bg, sdr_type)
print('sim_mat and sdrs loaded')
print('splitting and grooming data')
train, test, validate = split_into_sets(len(pickle_folders_to_load), training_percent,
testing_percent, validation_percent)
trainX = np.expand_dims([sim_mat_array[i] for i in train], -1)
trainY = np.expand_dims([sdr_array[i] for i in train], -1)
testX = np.expand_dims([sim_mat_array[i] for i in test], -1)
testY = np.array([sdr_array[i] for i in test])
print('setting up CNN')
# Building convolutional network
network = input_data(shape=[None, beat_spec_len, beat_spec_len, 1])
network = conv_2d(network, 32, 10, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = conv_2d(network, 64, 20, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = fully_connected(network, 128, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 1, activation='linear')
regress = tflearn.regression(network, optimizer='sgd', loss='mean_square', learning_rate=0.01)
print('running CNN')
# Training
model = tflearn.DNN(regress, tensorboard_verbose=1)
model.fit(trainX, trainY, n_epoch=10,
snapshot_step=1000, show_metric=True, run_id='{} classes'.format(n_classes - 1))
predicted = np.array(model.predict(testX))[:,0]
print('plotting')
plot(testY, predicted)
示例11: build_network
def build_network(image_size, batch_size=None, n_channels=3):
network = input_data(shape=[batch_size, image_size[0], image_size[1], n_channels],
data_preprocessing=img_prep,
data_augmentation=img_aug)
network = conv_2d(network, 16, 3, activation='relu')
network = max_pool_2d(network, 2)
network = conv_2d(network, 32, 3, activation='relu')
network = max_pool_2d(network, 2)
network = fully_connected(network, num_classes, activation='softmax')
network = regression(network, optimizer='adam',
loss='categorical_crossentropy',
learning_rate=0.0001)
return network
示例12: make_core_network
def make_core_network(network):
network = tflearn.reshape(network, [-1, 28, 28, 1], name="reshape")
network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = conv_2d(network, 64, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = fully_connected(network, 128, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 10, activation='softmax')
return network
示例13: generate_network
def generate_network(self):
""" Return tflearn cnn network.
"""
print(self.image_size, self.n_epoch, self.batch_size, self.person_ids)
print(type(self.image_size), type(self.n_epoch),
type(self.batch_size), type(self.person_ids))
if not isinstance(self.image_size, list) \
or not isinstance(self.n_epoch, int) \
or not isinstance(self.batch_size, int) \
or not isinstance(self.person_ids, list):
# if self.image_size is None or self.n_epoch is None or \
# self.batch_size is None or self.person_ids is None:
raise ValueError("Insufficient values to generate network.\n"
"Need (n_epoch, int), (batch_size, int),"
"(image_size, list), (person_ids, list).")
# Real-time data preprocessing
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()
# Real-time data augmentation
img_aug = ImageAugmentation()
img_aug.add_random_rotation(max_angle=25.)
img_aug.add_random_flip_leftright()
# Convolutional network building
network = input_data(
shape=[None, self.image_size[0], self.image_size[1], 3],
data_preprocessing=img_prep,
data_augmentation=img_aug)
network = conv_2d(network, self.image_size[0], self.IMAGE_CHANNEL_NUM,
activation='relu')
network = max_pool_2d(network, 2)
network = conv_2d(network, self.image_size[0] * 2,
self.IMAGE_CHANNEL_NUM,
activation='relu')
network = conv_2d(network, self.image_size[0] * 2,
self.IMAGE_CHANNEL_NUM,
activation='relu')
network = max_pool_2d(network, 2)
network = fully_connected(network, self.image_size[0] * 2**4,
activation='relu')
network = dropout(network, 0.5)
network = fully_connected(network, self.person_num,
activation='softmax')
network = regression(network, optimizer='adam',
loss='categorical_crossentropy',
learning_rate=0.001)
return network
示例14: _model3
def _model3():
global yTest, img_aug
tf.reset_default_graph()
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()
network = input_data(shape=[None, inputSize, inputSize, dim],
data_preprocessing=img_prep,
data_augmentation=img_aug)
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, len(yTest[0]), activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=0.001)
print('Model has been made!!!?')
# Training
model = tflearn.DNN(network, checkpoint_path='model_densenet_cifar10',
max_checkpoints=10, tensorboard_verbose=0,
clip_gradients=0.)
model.load(_path)
pred = model.predict(xTest)
df = pd.DataFrame(pred)
df.to_csv(_path + ".csv")
newList = pred.copy()
newList = convert2(newList)
if _CSV: makeCSV(newList)
pred = convert2(pred)
pred = convert3(pred)
yTest = convert3(yTest)
print(metrics.confusion_matrix(yTest, pred))
print(metrics.classification_report(yTest, pred))
print('Accuracy', accuracy_score(yTest, pred))
print()
if _wrFile: writeTest(pred)
示例15: main
def main():
"""
:return:
"""
pickle_folder = '../NMF/mfcc_pickles'
pickle_folders_to_load = [f for f in os.listdir(pickle_folder) if os.path.isdir(join(pickle_folder, f))]
fg_or_bg = 'background'
sdr_type = 'sdr'
feature = 'mfcc_clusters'
beat_spec_len = 432
n_epochs = 200
take = 1
# set up training, testing, & validation partitions
mfcc_array, sdr_array = load_mfcc_and_sdrs(pickle_folders_to_load, pickle_folder,
feature, fg_or_bg, sdr_type)
mfcc_array = np.expand_dims(mfcc_array, -1)
sdr_array = np.expand_dims(sdr_array, -1)
# Building convolutional network
network = input_data(shape=[None, 13, 100, 1])
network = conv_2d(network, 32, [5, 5], activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = conv_2d(network, 64, [5, 5], activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = fully_connected(network, 128, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 1, activation='linear')
regress = tflearn.regression(network, optimizer='rmsprop', loss='mean_square', learning_rate=0.001)
start = time.time()
# Training
model = tflearn.DNN(regress) # , session=sess)
model.fit(mfcc_array, sdr_array, n_epoch=n_epochs,
snapshot_step=1000, show_metric=True,
run_id='repet_save_{0}_epochs_take_{1}'.format(n_epochs, take))
elapsed = (time.time() - start)
print('Finished training after ' + elapsed + 'seconds. Saving...')
model_output_folder = 'network_outputs/'
model_output_file = join(model_output_folder, 'nmf_save_{0}_epochs_take_{1}'.format(n_epochs, take))
model.save(model_output_file)