当前位置: 首页>>代码示例>>Python>>正文


Python data_utils.pad_sequences函数代码示例

本文整理汇总了Python中tflearn.data_utils.pad_sequences函数的典型用法代码示例。如果您正苦于以下问题:Python pad_sequences函数的具体用法?Python pad_sequences怎么用?Python pad_sequences使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了pad_sequences函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: do_rnn

def do_rnn(trainX, testX, trainY, testY):
    global n_words
    # Data preprocessing
    # Sequence padding
    print "GET n_words embedding %d" % n_words


    trainX = pad_sequences(trainX, maxlen=MAX_DOCUMENT_LENGTH, value=0.)
    testX = pad_sequences(testX, maxlen=MAX_DOCUMENT_LENGTH, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Network building
    net = tflearn.input_data([None, MAX_DOCUMENT_LENGTH])
    net = tflearn.embedding(net, input_dim=n_words, output_dim=128)
    net = tflearn.lstm(net, 128, dropout=0.8)
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
                             loss='categorical_crossentropy')

    # Training



    model = tflearn.DNN(net, tensorboard_verbose=3)
    model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
             batch_size=32,run_id="maidou")
开发者ID:DemonZeros,项目名称:1book,代码行数:28,代码来源:16-3.py

示例2: do_rnn

def do_rnn(trainX, testX, trainY, testY):
    max_document_length=64
    y_test=testY
    trainX = pad_sequences(trainX, maxlen=max_document_length, value=0.)
    testX = pad_sequences(testX, maxlen=max_document_length, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Network building
    net = tflearn.input_data([None, max_document_length])
    net = tflearn.embedding(net, input_dim=10240000, output_dim=64)
    net = tflearn.lstm(net, 64, dropout=0.1)
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
                             loss='categorical_crossentropy')

    # Training
    model = tflearn.DNN(net, tensorboard_verbose=0,tensorboard_dir="dga_log")
    model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
              batch_size=10,run_id="dga",n_epoch=1)

    y_predict_list = model.predict(testX)
    #print y_predict_list

    y_predict = []
    for i in y_predict_list:
        print  i[0]
        if i[0] > 0.5:
            y_predict.append(0)
        else:
            y_predict.append(1)

    print(classification_report(y_test, y_predict))
    print metrics.confusion_matrix(y_test, y_predict)
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:35,代码来源:dga.py

示例3: pad_sentences_qr

def pad_sentences_qr(query, response, q_max_len, r_max_len, index):
	train_query = pad_sequences(query, maxlen=q_max_len, value=index)
	train_response = pad_sequences(response, maxlen=r_max_len, value=index)
	train_query = np.array(train_query)
	train_response = np.array(train_response)
	train_query_response = np.append(train_query, train_response, axis=1)
	return train_query, train_query_response, train_response, q_max_len, r_max_len, index+1
开发者ID:liguoyu1,项目名称:python,代码行数:7,代码来源:data_process.py

示例4: do_cnn

def  do_cnn(trainX, trainY,testX, testY):
    global n_words
    # Data preprocessing
    # Sequence padding
    trainX = pad_sequences(trainX, maxlen=MAX_DOCUMENT_LENGTH, value=0.)
    testX = pad_sequences(testX, maxlen=MAX_DOCUMENT_LENGTH, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Building convolutional network
    network = input_data(shape=[None, MAX_DOCUMENT_LENGTH], name='input')
    network = tflearn.embedding(network, input_dim=n_words+1, output_dim=128)
    branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
    branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
    branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
    network = merge([branch1, branch2, branch3], mode='concat', axis=1)
    network = tf.expand_dims(network, 2)
    network = global_max_pool(network)
    network = dropout(network, 0.5)
    network = fully_connected(network, 2, activation='softmax')
    network = regression(network, optimizer='adam', learning_rate=0.001,
                         loss='categorical_crossentropy', name='target')
    # Training
    model = tflearn.DNN(network, tensorboard_verbose=0)
    model.fit(trainX, trainY, n_epoch = 20, shuffle=True, validation_set=(testX, testY), show_metric=True, batch_size=32)
开发者ID:DemonZeros,项目名称:1book,代码行数:26,代码来源:17-2.py

示例5: do_rnn

def do_rnn(x,y):
    global max_document_length
    print "RNN"
    trainX, testX, trainY, testY = train_test_split(x, y, test_size=0.4, random_state=0)
    y_test=testY

    trainX = pad_sequences(trainX, maxlen=max_document_length, value=0.)
    testX = pad_sequences(testX, maxlen=max_document_length, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Network building
    net = tflearn.input_data([None, max_document_length])
    net = tflearn.embedding(net, input_dim=10240000, output_dim=128)
    net = tflearn.lstm(net, 128, dropout=0.8)
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
                             loss='categorical_crossentropy')

    # Training
    model = tflearn.DNN(net, tensorboard_verbose=0)
    model.fit(trainX, trainY, validation_set=0.1, show_metric=True,
              batch_size=10,run_id="webshell",n_epoch=5)

    y_predict_list=model.predict(testX)
    y_predict=[]
    for i in y_predict_list:
        if i[0] > 0.5:
            y_predict.append(0)
        else:
            y_predict.append(1)

    do_metrics(y_test, y_predict)
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:34,代码来源:webshell.py

示例6: pad_SentencesQR

def pad_SentencesQR(query, response):
	q_max_len, r_max_len, query_word, response_word, index = fenci(query, response)
	print("query max length:{}, response max length:{}".format(q_max_len, r_max_len))
	train_query = pad_sequences(query_word, maxlen=q_max_len, value=index)
	train_response = pad_sequences(response_word, maxlen=r_max_len, value=index)
	# print train_query[0]
	# print train_response[0]
	train_query = np.array(train_query)
	train_response = np.array(train_response)
	train_query_response = np.append(train_query, train_response, axis=1)
	return train_query, train_query_response, train_response, q_max_len, r_max_len, index
开发者ID:liguoyu1,项目名称:python,代码行数:11,代码来源:data_process.py

示例7: do_cnn

def do_cnn(x,y):
    global max_document_length
    print "CNN and tf"
    trainX, testX, trainY, testY = train_test_split(x, y, test_size=0.4, random_state=0)
    y_test=testY

    trainX = pad_sequences(trainX, maxlen=max_document_length, value=0.)
    testX = pad_sequences(testX, maxlen=max_document_length, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Building convolutional network
    network = input_data(shape=[None,max_document_length], name='input')
    network = tflearn.embedding(network, input_dim=1000000, output_dim=128)
    branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
    branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
    branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
    network = merge([branch1, branch2, branch3], mode='concat', axis=1)
    network = tf.expand_dims(network, 2)
    network = global_max_pool(network)
    network = dropout(network, 0.8)
    network = fully_connected(network, 2, activation='softmax')
    network = regression(network, optimizer='adam', learning_rate=0.001,
                         loss='categorical_crossentropy', name='target')

    model = tflearn.DNN(network, tensorboard_verbose=0)
    #if not os.path.exists(pkl_file):
        # Training
    model.fit(trainX, trainY,
                  n_epoch=5, shuffle=True, validation_set=0.1,
                  show_metric=True, batch_size=100,run_id="webshell")
    #    model.save(pkl_file)
    #else:
    #    model.load(pkl_file)

    y_predict_list=model.predict(testX)
    #y_predict = list(model.predict(testX,as_iterable=True))

    y_predict=[]
    for i in y_predict_list:
        print  i[0]
        if i[0] > 0.5:
            y_predict.append(0)
        else:
            y_predict.append(1)
    print 'y_predict_list:'
    print y_predict_list
    print 'y_predict:'
    print  y_predict
    #print  y_test

    do_metrics(y_test, y_predict)
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:53,代码来源:webshell.py

示例8: do_rnn

def do_rnn(trainX, testX, trainY, testY):
    global max_sequences_len
    global max_sys_call
    # Data preprocessing
    # Sequence padding

    trainX = pad_sequences(trainX, maxlen=max_sequences_len, value=0.)
    testX = pad_sequences(testX, maxlen=max_sequences_len, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY_old=testY
    testY = to_categorical(testY, nb_classes=2)

    # Network building
    print "GET max_sequences_len embedding %d" % max_sequences_len
    print "GET max_sys_call embedding %d" % max_sys_call

    net = tflearn.input_data([None, max_sequences_len])
    net = tflearn.embedding(net, input_dim=max_sys_call+1, output_dim=128)
    net = tflearn.lstm(net, 128, dropout=0.3)
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', learning_rate=0.1,
                             loss='categorical_crossentropy')

    # Training



    model = tflearn.DNN(net, tensorboard_verbose=3)
    model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
             batch_size=32,run_id="maidou")

    y_predict_list = model.predict(testX)
    #print y_predict_list

    y_predict = []
    for i in y_predict_list:
        #print  i[0]
        if i[0] > 0.5:
            y_predict.append(0)
        else:
            y_predict.append(1)

    #y_predict=to_categorical(y_predict, nb_classes=2)

    print(classification_report(testY_old, y_predict))
    print metrics.confusion_matrix(testY_old, y_predict)
开发者ID:DemonZeros,项目名称:1book,代码行数:47,代码来源:16-5.py

示例9: bi_lstm

def bi_lstm(trainX, trainY,testX, testY):
    trainX = pad_sequences(trainX, maxlen=200, value=0.)
    testX = pad_sequences(testX, maxlen=200, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Network building
    net = tflearn.input_data(shape=[None, 200])
    net = tflearn.embedding(net, input_dim=20000, output_dim=128)
    net = tflearn.bidirectional_rnn(net, BasicLSTMCell(128), BasicLSTMCell(128))
    net = tflearn.dropout(net, 0.5)
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', loss='categorical_crossentropy')

    # Training
    model = tflearn.DNN(net, clip_gradients=0., tensorboard_verbose=2)
    model.fit(trainX, trainY, validation_set=0.1, show_metric=True, batch_size=64,run_id="rnn-bilstm")
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:18,代码来源:rnn.py

示例10: lstm

def lstm(trainX, trainY,testX, testY):
    # Data preprocessing
    # Sequence padding
    trainX = pad_sequences(trainX, maxlen=100, value=0.)
    testX = pad_sequences(testX, maxlen=100, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Network building
    net = tflearn.input_data([None, 100])
    net = tflearn.embedding(net, input_dim=10000, output_dim=128)
    net = tflearn.lstm(net, 128, dropout=0.8)
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
                             loss='categorical_crossentropy')

    # Training
    model = tflearn.DNN(net, tensorboard_verbose=0)
    model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
              batch_size=32,run_id="rnn-lstm")
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:21,代码来源:rnn.py

示例11: main

def main(_):
    # 1.load data with vocabulary of words and labels
    vocabulary_word2index, vocabulary_index2word = create_voabulary(word2vec_model_path=FLAGS.word2vec_model_path,name_scope="transformer_classification")  # simple='simple'
    vocab_size = len(vocabulary_word2index)
    print("transformer_classification.vocab_size:", vocab_size)
    vocabulary_word2index_label, vocabulary_index2word_label = create_voabulary_label(name_scope="transformer_classification")
    questionid_question_lists=load_final_test_data(FLAGS.predict_source_file)
    print("list of total questions:",len(questionid_question_lists))
    test= load_data_predict(vocabulary_word2index,vocabulary_word2index_label,questionid_question_lists)
    print("list of total questions2:",len(test))
    testX=[]
    question_id_list=[]
    for tuple in test:
        question_id,question_string_list=tuple
        question_id_list.append(question_id)
        testX.append(question_string_list)
    # 2.Data preprocessing: Sequence padding
    print("start padding....")
    testX2 = pad_sequences(testX, maxlen=FLAGS.sequence_length, value=0.)  # padding to max length
    print("list of total questions3:", len(testX2))
    print("end padding...")
   # 3.create session.
    config=tf.ConfigProto()
    config.gpu_options.allow_growth=True
    with tf.Session(config=config) as sess:
        # 4.Instantiate Model
        model=Transformer(FLAGS.num_classes, FLAGS.learning_rate, FLAGS.batch_size, FLAGS.decay_steps, FLAGS.decay_rate, FLAGS.sequence_length,
                 vocab_size, FLAGS.embed_size,FLAGS.d_model,FLAGS.d_k,FLAGS.d_v,FLAGS.h,FLAGS.num_layer,FLAGS.is_training,l2_lambda=FLAGS.l2_lambda)
        saver=tf.train.Saver()
        if os.path.exists(FLAGS.ckpt_dir+"checkpoint"):
            print("Restoring Variables from Checkpoint")
            saver.restore(sess,tf.train.latest_checkpoint(FLAGS.ckpt_dir))
        else:
            print("Can't find the checkpoint.going to stop")
            return
        # 5.feed data, to get logits
        number_of_training_data=len(testX2);print("number_of_training_data:",number_of_training_data)
        index=0
        predict_target_file_f = codecs.open(FLAGS.predict_target_file, 'a', 'utf8')
        for start, end in zip(range(0, number_of_training_data, FLAGS.batch_size),range(FLAGS.batch_size, number_of_training_data+1, FLAGS.batch_size)):
            logits=sess.run(model.logits,feed_dict={model.input_x:testX2[start:end],model.dropout_keep_prob:1}) #logits:[batch_size,self.num_classes]

            question_id_sublist=question_id_list[start:end]
            get_label_using_logits_batch(question_id_sublist, logits, vocabulary_index2word_label, predict_target_file_f)

            # 6. get lable using logtis
            #predicted_labels=get_label_using_logits(logits[0],vocabulary_index2word_label)
            #print(index," ;predicted_labels:",predicted_labels)
            # 7. write question id and labels to file system.
            #write_question_id_with_labels(question_id_list[index],predicted_labels,predict_target_file_f)
            index=index+1
        predict_target_file_f.close()
开发者ID:AmjadHisham,项目名称:text_classification,代码行数:52,代码来源:a2_predict_classification.py

示例12: do_rnn_wordbag

def do_rnn_wordbag(trainX, testX, trainY, testY):
    global max_document_length
    print "RNN and wordbag"

    trainX = pad_sequences(trainX, maxlen=max_document_length, value=0.)
    testX = pad_sequences(testX, maxlen=max_document_length, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Network building
    net = tflearn.input_data([None, max_document_length])
    net = tflearn.embedding(net, input_dim=10240000, output_dim=128)
    net = tflearn.lstm(net, 128, dropout=0.8)
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
                             loss='categorical_crossentropy')

    # Training
    model = tflearn.DNN(net, tensorboard_verbose=0)
    model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
              batch_size=10,run_id="review",n_epoch=5)
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:22,代码来源:review.py

示例13: create_datasets

def create_datasets(file_path, vocab_size=30000, val_fraction=0.0):

    # IMDB Dataset loading
    train, test, _ = imdb.load_data(
        path=file_path,
        n_words=vocab_size,
        valid_portion=val_fraction,
        sort_by_len=False)
    trainX, trainY = train
    testX, testY = test

    # Data preprocessing
    # Sequence padding
    trainX = pad_sequences(trainX, maxlen=FLAGS.max_len, value=0.)
    testX = pad_sequences(testX, maxlen=FLAGS.max_len, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    train_dataset = DataSet(trainX, trainY)

    return train_dataset
开发者ID:Biocodings,项目名称:Paddle,代码行数:22,代码来源:reader.py

示例14: main

def main(_):
    # 1.load data with vocabulary of words and labels
    vocabulary_word2index, vocabulary_index2word = create_voabulary()
    vocab_size = len(vocabulary_word2index)
    print("vocab_size:",vocab_size)
    #iii=0
    #iii/0
    vocabulary_word2index_label,vocabulary_index2word_label = create_voabulary_label()
    questionid_question_lists=load_final_test_data(FLAGS.predict_source_file) #TODO
    test= load_data_predict(vocabulary_word2index,vocabulary_word2index_label,questionid_question_lists) #TODO
    testX=[]
    question_id_list=[]
    for tuple in test:
        question_id,question_string_list=tuple
        question_id_list.append(question_id)
        testX.append(question_string_list)

    # 2.Data preprocessing: Sequence padding
    print("start padding....")
    testX2 = pad_sequences(testX, maxlen=FLAGS.sentence_len, value=0.)  # padding to max length
    print("end padding...")

    # 3.create session.
    config=tf.ConfigProto()
    config.gpu_options.allow_growth=True
    with tf.Session(config=config) as sess:
        # 4.Instantiate Model
        fast_text=fastText(FLAGS.label_size, FLAGS.learning_rate, FLAGS.batch_size, FLAGS.decay_steps, FLAGS.decay_rate,FLAGS.num_sampled,FLAGS.sentence_len,vocab_size,FLAGS.embed_size,FLAGS.is_training)
        saver=tf.train.Saver()
        if os.path.exists(FLAGS.ckpt_dir+"checkpoint"):
            print("Restoring Variables from Checkpoint")
            saver.restore(sess,tf.train.latest_checkpoint(FLAGS.ckpt_dir))
        else:
            print("Can't find the checkpoint.going to stop")
            return
        # 5.feed data, to get logits
        number_of_training_data=len(testX2);print("number_of_training_data:",number_of_training_data)
        batch_size=1
        index=0
        predict_target_file_f = codecs.open(FLAGS.predict_target_file, 'a', 'utf8')
        for start, end in zip(range(0, number_of_training_data, batch_size),range(batch_size, number_of_training_data+1, batch_size)):
            logits=sess.run(fast_text.logits,feed_dict={fast_text.sentence:testX2[start:end]}) #'shape of logits:', ( 1, 1999)
            # 6. get lable using logtis
            predicted_labels=get_label_using_logits(logits[0],vocabulary_index2word_label)
            # 7. write question id and labels to file system.
            write_question_id_with_labels(question_id_list[index],predicted_labels,predict_target_file_f)
            index=index+1
        predict_target_file_f.close()
开发者ID:AmjadHisham,项目名称:text_classification,代码行数:48,代码来源:p5_fastTextB_predict_multilabel.py

示例15: main

def main(_):
    # 1.load data with vocabulary of words and labels
    vocabulary_word2index, vocabulary_index2word = create_voabulary(word2vec_model_path=FLAGS.word2vec_model_path,name_scope="dynamic_memory_network")
    vocab_size = len(vocabulary_word2index)
    vocabulary_word2index_label, vocabulary_index2word_label = create_voabulary_label(name_scope="dynamic_memory_network")
    questionid_question_lists=load_final_test_data(FLAGS.predict_source_file)
    test= load_data_predict(vocabulary_word2index,vocabulary_word2index_label,questionid_question_lists)
    testX=[]
    question_id_list=[]
    for tuple in test:
        question_id,question_string_list=tuple
        question_id_list.append(question_id)
        testX.append(question_string_list)
    # 2.Data preprocessing: Sequence padding
    print("start padding....")
    testX2 = pad_sequences(testX, maxlen=FLAGS.sequence_length, value=0.)  # padding to max length
    print("end padding...")
   # 3.create session.
    config=tf.ConfigProto()
    config.gpu_options.allow_growth=True
    with tf.Session(config=config) as sess:
        # 4.Instantiate Model
        model = DynamicMemoryNetwork(FLAGS.num_classes, FLAGS.learning_rate, FLAGS.batch_size, FLAGS.decay_steps, FLAGS.decay_rate, FLAGS.sequence_length,
                                     FLAGS.story_length,vocab_size, FLAGS.embed_size, FLAGS.hidden_size, FLAGS.is_training,num_pass=FLAGS.num_pass,
                                     use_gated_gru=FLAGS.use_gated_gru,decode_with_sequences=FLAGS.decode_with_sequences,multi_label_flag=FLAGS.multi_label_flag,l2_lambda=FLAGS.l2_lambda)
        saver=tf.train.Saver()
        if os.path.exists(FLAGS.ckpt_dir+"checkpoint"):
            print("Restoring Variables from Checkpoint of EntityNet.")
            saver.restore(sess,tf.train.latest_checkpoint(FLAGS.ckpt_dir))
        else:
            print("Can't find the checkpoint.going to stop")
            return
        # 5.feed data, to get logits
        number_of_training_data=len(testX2);print("number_of_training_data:",number_of_training_data)
        index=0
        predict_target_file_f = codecs.open(FLAGS.predict_target_file, 'a', 'utf8')
        for start, end in zip(range(0, number_of_training_data, FLAGS.batch_size),range(FLAGS.batch_size, number_of_training_data+1, FLAGS.batch_size)):
            logits=sess.run(model.logits,feed_dict={model.query:testX2[start:end],model.story: np.expand_dims(testX2[start:end],axis=1),
                                                    model.dropout_keep_prob:1.0}) #'shape of logits:', ( 1, 1999)
            # 6. get lable using logtis
            #predicted_labels=get_label_using_logits(logits[0],vocabulary_index2word_label)
            # 7. write question id and labels to file system.
            #write_question_id_with_labels(question_id_list[index],predicted_labels,predict_target_file_f)
            question_id_sublist=question_id_list[start:end]
            get_label_using_logits_batch(question_id_sublist, logits, vocabulary_index2word_label, predict_target_file_f)

            index=index+1
        predict_target_file_f.close()
开发者ID:brucexia6116,项目名称:text_classification,代码行数:48,代码来源:a8_predict.py


注:本文中的tflearn.data_utils.pad_sequences函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。