当前位置: 首页>>代码示例>>Python>>正文


Python activations.get函数代码示例

本文整理汇总了Python中tflearn.activations.get函数的典型用法代码示例。如果您正苦于以下问题:Python get函数的具体用法?Python get怎么用?Python get使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了get函数的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: activation

def activation(incoming, activation='linear', name='activation'):

    """ Activation.

    Apply given activation to incoming tensor.

    Arguments:
        incoming: A `Tensor`. The incoming tensor.
        activation: `str` (name) or `function` (returning a `Tensor`).
            Activation applied to this layer (see tflearn.activations).
            Default: 'linear'.

    """

    if isinstance(activation, str):
        x = activations.get(activation)(incoming)
    elif hasattr(incoming, '__call__'):
        x = activation(incoming)
    else:
        raise ValueError('Unknown activation type.')

    # Track output tensor.
    tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, x)

    return x
开发者ID:igormq,项目名称:tflearn,代码行数:25,代码来源:core.py

示例2: block8

 def block8(net, scale=1.0, activation="relu"):
     tower_conv = relu(batch_normalization(conv_2d(net, 192, 1, bias=False, activation=None, name='Conv2d_1x1')))
     tower_conv1_0 = relu(batch_normalization(conv_2d(net, 192, 1, bias=False, activation=None, name='Conv2d_0a_1x1')))
     tower_conv1_1 = relu(batch_normalization(conv_2d(tower_conv1_0, 224, [1,3], bias=False, activation=None, name='Conv2d_0b_1x3')))
     tower_conv1_2 = relu(batch_normalization(conv_2d(tower_conv1_1, 256, [3,1], bias=False, name='Conv2d_0c_3x1')))
     tower_mixed = merge([tower_conv,tower_conv1_2], mode='concat', axis=3)
     tower_out = relu(batch_normalization(conv_2d(tower_mixed, net.get_shape()[3], 1, bias=False, activation=None, name='Conv2d_1x1')))
     net += scale * tower_out
     if activation:
         if isinstance(activation, str):
             net = activations.get(activation)(net)
         elif hasattr(activation, '__call__'):
             net = activation(net)
         else:
             raise ValueError("Invalid Activation.")
     return net
开发者ID:richardbored,项目名称:customData,代码行数:16,代码来源:train.py

示例3: activation

def activation(incoming, activation='linear'):

    """ Activation.

    Apply given activation to incoming tensor.

    Arguments:
        incoming: A `Tensor`. The incoming tensor.
        activation: `str` (name) or `Tensor`. Activation applied to this layer.
            (see tflearn.activations). Default: 'linear'.

    """

    if isinstance(activation, str):
        return activations.get(activation)(incoming)
    elif hasattr(incoming, '__call__'):
        return activation(incoming)
    else:
        raise ValueError('Unknown activation type.')
开发者ID:chizhizhen,项目名称:tflearn,代码行数:19,代码来源:core.py

示例4: fully_connected

def fully_connected(incoming, n_units, activation='linear', bias=True,
                    weights_init='truncated_normal', bias_init='zeros',
                    regularizer=None, weight_decay=0.001, trainable=True,
                    restore=True, reuse=False, scope=None,
                    name="FullyConnected"):
    """ Fully Connected.

    A fully connected layer.

    Input:
        (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten.

    Output:
        2D Tensor [samples, n_units].

    Arguments:
        incoming: `Tensor`. Incoming (2+)D Tensor.
        n_units: `int`, number of units for this layer.
        activation: `str` (name) or `function` (returning a `Tensor`).
            Activation applied to this layer (see tflearn.activations).
            Default: 'linear'.
        bias: `bool`. If True, a bias is used.
        weights_init: `str` (name) or `Tensor`. Weights initialization.
            (see tflearn.initializations) Default: 'truncated_normal'.
        bias_init: `str` (name) or `Tensor`. Bias initialization.
            (see tflearn.initializations) Default: 'zeros'.
        regularizer: `str` (name) or `Tensor`. Add a regularizer to this
            layer weights (see tflearn.regularizers). Default: None.
        weight_decay: `float`. Regularizer decay parameter. Default: 0.001.
        trainable: `bool`. If True, weights will be trainable.
        restore: `bool`. If True, this layer weights will be restored when
            loading a model.
        reuse: `bool`. If True and 'scope' is provided, this layer variables
            will be reused (shared).
        scope: `str`. Define this layer scope (optional). A scope can be
            used to share variables between layers. Note that scope will
            override name.
        name: A name for this layer (optional). Default: 'FullyConnected'.

    Attributes:
        scope: `Scope`. This layer scope.
        W: `Tensor`. Variable representing units weights.
        b: `Tensor`. Variable representing biases.

    """
    input_shape = utils.get_incoming_shape(incoming)
    assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D"
    n_inputs = int(np.prod(input_shape[1:]))

    # Build variables and inference.
    with tf.variable_op_scope([incoming], scope, name, reuse=reuse) as scope:
        name = scope.name

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = va.variable('W', shape=[n_inputs, n_units], regularizer=W_regul,
                        initializer=W_init, trainable=trainable,
                        restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        b = None
        if bias:
            if isinstance(bias, str):
                bias_init = initializations.get(bias_init)()
            b = va.variable('b', shape=[n_units], initializer=bias_init,
                            trainable=trainable, restore=restore)
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)

        inference = incoming
        # If input is not 2d, flatten it.
        if len(input_shape) > 2:
            inference = tf.reshape(inference, [-1, n_inputs])

        inference = tf.matmul(inference, W)
        if b: inference = tf.nn.bias_add(inference, b)

        if isinstance(activation, str):
            inference = activations.get(activation)(inference)
        elif hasattr(activation, '__call__'):
            inference = activation(inference)
        else:
            raise ValueError("Invalid Activation.")

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.b = b

    # Track output tensor.
    tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference)

    return inference
开发者ID:igormq,项目名称:tflearn,代码行数:99,代码来源:core.py

示例5: highway

def highway(incoming, n_units, activation='linear', transform_dropout=None,
            weights_init='truncated_normal', bias_init='zeros',
            regularizer=None, weight_decay=0.001, trainable=True,
            restore=True, reuse=False, scope=None,
            name="FullyConnectedHighway"):
    """ Fully Connected Highway.

    A fully connected highway network layer, with some inspiration from
    [https://github.com/fomorians/highway-fcn](https://github.com/fomorians/highway-fcn).

    Input:
        (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten.

    Output:
        2D Tensor [samples, n_units].

    Arguments:
        incoming: `Tensor`. Incoming (2+)D Tensor.
        n_units: `int`, number of units for this layer.
        activation: `str` (name) or `function` (returning a `Tensor`).
            Activation applied to this layer (see tflearn.activations).
            Default: 'linear'.
        transform_dropout: `float`: Keep probability on the highway transform gate.
        weights_init: `str` (name) or `Tensor`. Weights initialization.
            (see tflearn.initializations) Default: 'truncated_normal'.
        bias_init: `str` (name) or `Tensor`. Bias initialization.
            (see tflearn.initializations) Default: 'zeros'.
        regularizer: `str` (name) or `Tensor`. Add a regularizer to this
            layer weights (see tflearn.regularizers). Default: None.
        weight_decay: `float`. Regularizer decay parameter. Default: 0.001.
        trainable: `bool`. If True, weights will be trainable.
        restore: `bool`. If True, this layer weights will be restored when
            loading a model
        reuse: `bool`. If True and 'scope' is provided, this layer variables
            will be reused (shared).
        scope: `str`. Define this layer scope (optional). A scope can be
            used to share variables between layers. Note that scope will
            override name.
        name: A name for this layer (optional). Default: 'FullyConnectedHighway'.

    Attributes:
        scope: `Scope`. This layer scope.
        W: `Tensor`. Variable representing units weights.
        W_t: `Tensor`. Variable representing units weights for transform gate.
        b: `Tensor`. Variable representing biases.
        b_t: `Tensor`. Variable representing biases for transform gate.

    Links:
        [https://arxiv.org/abs/1505.00387](https://arxiv.org/abs/1505.00387)

    """
    input_shape = utils.get_incoming_shape(incoming)
    assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D"
    n_inputs = int(np.prod(input_shape[1:]))

    # Build variables and inference.
    with tf.variable_op_scope([incoming], scope, name, reuse=reuse) as scope:
        name = scope.name

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = va.variable('W', shape=[n_inputs, n_units], regularizer=W_regul,
                        initializer=W_init, trainable=trainable,
                        restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        if isinstance(bias_init, str):
            bias_init = initializations.get(bias_init)()
        b = va.variable('b', shape=[n_units], initializer=bias_init,
                        trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)

        # Weight and bias for the transform gate
        W_T = va.variable('W_T', shape=[n_inputs, n_units],
                          regularizer=None, initializer=W_init,
                          trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W_T)

        b_T = va.variable('b_T', shape=[n_units],
                          initializer=tf.constant_initializer(-1),
                          trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b_T)

        # If input is not 2d, flatten it.
        if len(input_shape) > 2:
            incoming = tf.reshape(incoming, [-1, n_inputs])

        if isinstance(activation, str):
            activation = activations.get(activation)
        elif hasattr(activation, '__call__'):
            activation = activation
        else:
            raise ValueError("Invalid Activation.")

        H = activation(tf.matmul(incoming, W) + b)
        T = tf.sigmoid(tf.matmul(incoming, W_T) + b_T)
#.........这里部分代码省略.........
开发者ID:igormq,项目名称:tflearn,代码行数:101,代码来源:core.py

示例6: single_unit

def single_unit(incoming, activation='linear', bias=True, trainable=True,
                restore=True, reuse=False, scope=None, name="Linear"):
    """ Single Unit.

    A single unit (Linear) Layer.

    Input:
        1-D Tensor [samples]. If not 2D, input will be flatten.

    Output:
        1-D Tensor [samples].

    Arguments:
        incoming: `Tensor`. Incoming Tensor.
        activation: `str` (name) or `function`. Activation applied to this
            layer (see tflearn.activations). Default: 'linear'.
        bias: `bool`. If True, a bias is used.
        trainable: `bool`. If True, weights will be trainable.
        restore: `bool`. If True, this layer weights will be restored when
            loading a model.
        reuse: `bool`. If True and 'scope' is provided, this layer variables
            will be reused (shared).
        scope: `str`. Define this layer scope (optional). A scope can be
            used to share variables between layers. Note that scope will
            override name.
        name: A name for this layer (optional). Default: 'Linear'.

    Attributes:
        W: `Tensor`. Variable representing weight.
        b: `Tensor`. Variable representing bias.

    """
    input_shape = utils.get_incoming_shape(incoming)
    n_inputs = int(np.prod(input_shape[1:]))

    # Build variables and inference.
    with tf.variable_op_scope([incoming], scope, name, reuse=reuse) as scope:
        name = scope.name

        W = va.variable('W', shape=[n_inputs],
                        initializer=tf.constant_initializer(np.random.randn()),
                        trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        b = None
        if bias:
            b = va.variable('b', shape=[n_inputs],
                            initializer=tf.constant_initializer(np.random.randn()),
                            trainable=trainable, restore=restore)
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)

        inference = incoming
        # If input is not 2d, flatten it.
        if len(input_shape) > 1:
            inference = tf.reshape(inference, [-1])

        inference = tf.mul(inference, W)
        if b: inference = tf.add(inference, b)

        if isinstance(activation, str):
            inference = activations.get(activation)(inference)
        elif hasattr(activation, '__call__'):
            inference = activation(inference)
        else:
            raise ValueError("Invalid Activation.")

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.b = b

    # Track output tensor.
    tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference)

    return inference
开发者ID:igormq,项目名称:tflearn,代码行数:78,代码来源:core.py

示例7: fully_connected

def fully_connected(incoming, n_units, activation='linear', bias=True,
                    weights_init='truncated_normal', bias_init='zeros',
                    regularizer=None, weight_decay=0.001, trainable=True,
                    restore=True, name="FullyConnected"):
    """ Fully Connected.

    A fully connected layer.

    Input:
        (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten.

    Output:
        2D Tensor [samples, n_units].

    Arguments:
        incoming: `Tensor`. Incoming (2+)D Tensor.
        n_units: `int`, number of units for this layer.
        activation: `str` (name) or `Tensor`. Activation applied to this layer.
            (see tflearn.activations). Default: 'linear'.
        bias: `bool`. If True, a bias is used.
        weights_init: `str` (name) or `Tensor`. Weights initialization.
            (see tflearn.initializations) Default: 'truncated_normal'.
        bias_init: `str` (name) or `Tensor`. Bias initialization.
            (see tflearn.initializations) Default: 'zeros'.
       regularizer: `str` (name) or `Tensor`. Add a regularizer to this
            layer weights (see tflearn.regularizers). Default: None.
       weight_decay: `float`. Regularizer decay parameter. Default: 0.001.
       trainable: `bool`. If True, weights will be trainable.
       restore: `bool`. If True, this layer weights will be restored when
            loading a model
       name: A name for this layer (optional). Default: 'FullyConnected'.

    Attributes:
        scope: `Scope`. This layer scope.
        W: `Tensor`. Variable representing units weights.
        b: `Tensor`. Variable representing biases.

    """
    input_shape = utils.get_incoming_shape(incoming)
    n_inputs = int(np.prod(input_shape[1:]))

    # Build variables and inference.
    with tf.name_scope(name) as scope:

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = va.variable(scope + 'W', shape=[n_inputs, n_units],
                        regularizer=W_regul, initializer=W_init,
                        trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, W)

        b = None
        if bias:
            b_init = initializations.get(bias_init)()
            b = va.variable(scope + 'b', shape=[n_units],
                            initializer=b_init, trainable=trainable,
                            restore=restore)
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, b)

        inference = incoming
        # If input is not 2d, flatten it.
        if len(input_shape) > 2:
            inference = tf.reshape(inference, [-1, n_inputs])

        inference = tf.matmul(inference, W)
        if b: inference = tf.nn.bias_add(inference, b)
        inference = activations.get(activation)(inference)

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.b = b

    return inference
开发者ID:chizhizhen,项目名称:tflearn,代码行数:81,代码来源:core.py

示例8: single_unit

def single_unit(incoming, activation='linear', bias=True, trainable=True,
                restore=True, name="Linear"):
    """ Single Unit.

    A single unit (Linear) Layer.

    Input:
        1-D Tensor [samples]. If not 2D, input will be flatten.

    Output:
        1-D Tensor [samples].

    Arguments:
        incoming: `Tensor`. Incoming Tensor.
        activation: `str` (name) or `Tensor`. Activation applied to this layer.
            (see tflearn.activations). Default: 'linear'.
        bias: `bool`. If True, a bias is used.
        trainable: `bool`. If True, weights will be trainable.
        restore: `bool`. If True, this layer weights will be restored when
            loading a model.
        name: A name for this layer (optional). Default: 'Dense'.

    Attributes:
        W: `Tensor`. Variable representing weight.
        b: `Tensor`. Variable representing bias.

    """
    input_shape = utils.get_incoming_shape(incoming)
    n_inputs = int(np.prod(input_shape[1:]))

    # Build variables and inference.
    with tf.name_scope(name) as scope:

        W = va.variable(scope + 'W', shape=[n_inputs],
                        initializer=tf.constant_initializer(np.random.randn()),
                        trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, W)

        b = None
        if bias:
            b = va.variable(scope + 'b', shape=[n_inputs],
                            initializer=tf.constant_initializer(np.random.randn()),
                            trainable=trainable, restore=restore)
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, b)

        inference = incoming
        # If input is not 2d, flatten it.
        if len(input_shape) > 1:
            inference = tf.reshape(inference, [-1])

        inference = tf.mul(inference, W)
        if b: inference = tf.add(inference, b)
        inference = activations.get(activation)(inference)

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.b = b

    return inference
开发者ID:chizhizhen,项目名称:tflearn,代码行数:63,代码来源:core.py

示例9: conv_2d_BN

def conv_2d_BN(incoming, nb_filter, filter_size, strides=1, padding='same',
            activation='linear', bias=True, weights_init='xavier',
            bias_init='zeros', regularizer=None, weight_decay=0.001,
            trainable=True, restore=True, reuse=False, scope=None,
            name="Conv2D", batch_norm=False):
    """ Convolution 2D.
    Input:
        4-D Tensor [batch, height, width, in_channels].
    Output:
        4-D Tensor [batch, new height, new width, nb_filter].
    Arguments:
        incoming: `Tensor`. Incoming 4-D Tensor.
        nb_filter: `int`. The number of convolutional filters.
        filter_size: `int` or `list of int`. Size of filters.
        strides: 'int` or list of `int`. Strides of conv operation.
            Default: [1 1 1 1].
        padding: `str` from `"same", "valid"`. Padding algo to use.
            Default: 'same'.
        activation: `str` (name) or `function` (returning a `Tensor`).
            Activation applied to this layer (see tflearn.activations).
            Default: 'linear'.
        bias: `bool`. If True, a bias is used.
        weights_init: `str` (name) or `Tensor`. Weights initialization.
            (see tflearn.initializations) Default: 'truncated_normal'.
        bias_init: `str` (name) or `Tensor`. Bias initialization.
            (see tflearn.initializations) Default: 'zeros'.
        regularizer: `str` (name) or `Tensor`. Add a regularizer to this
            layer weights (see tflearn.regularizers). Default: None.
        weight_decay: `float`. Regularizer decay parameter. Default: 0.001.
        trainable: `bool`. If True, weights will be trainable.
        restore: `bool`. If True, this layer weights will be restored when
            loading a model.
        reuse: `bool`. If True and 'scope' is provided, this layer variables
            will be reused (shared).
        scope: `str`. Define this layer scope (optional). A scope can be
            used to share variables between layers. Note that scope will
            override name.
        name: A name for this layer (optional). Default: 'Conv2D'.
        batch_norm: If true, add batch normalization with default TFLearn 
            parameters before the activation layer 
    Attributes:
        scope: `Scope`. This layer scope.
        W: `Variable`. Variable representing filter weights.
        b: `Variable`. Variable representing biases.
    """
    input_shape = utils.get_incoming_shape(incoming)
    assert len(input_shape) == 4, "Incoming Tensor shape must be 4-D"
    filter_size = utils.autoformat_filter_conv2d(filter_size,
                                                 input_shape[-1],
                                                 nb_filter)
    strides = utils.autoformat_kernel_2d(strides)
    padding = utils.autoformat_padding(padding)

    # Variable Scope fix for older TF
    try:
        vscope = tf.variable_scope(scope, default_name=name, values=[incoming],
                                   reuse=reuse)
    except Exception:
        vscope = tf.variable_op_scope([incoming], scope, name, reuse=reuse)

    with vscope as scope:
        name = scope.name

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = vs.variable('W', shape=filter_size, regularizer=W_regul,
                        initializer=W_init, trainable=trainable,
                        restore=restore)

        # Track per layer variables
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        b = None
        if bias:
            if isinstance(bias_init, str):
                bias_init = initializations.get(bias_init)()
            b = vs.variable('b', shape=nb_filter, initializer=bias_init,
                            trainable=trainable, restore=restore)
            # Track per layer variables
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)

        inference = tf.nn.conv2d(incoming, W, strides, padding)
        if b: inference = tf.nn.bias_add(inference, b)

        if batch_norm:
            inference = batch_normalization(inference)
        
        if isinstance(activation, str):
            if activation == 'softmax':
                shapes = inference.get_shape()

                inference = activations.get(activation)(inference)
        elif hasattr(activation, '__call__'):
            inference = activation(inference)
        else:
            raise ValueError("Invalid Activation.")
#.........这里部分代码省略.........
开发者ID:mikecassell,项目名称:MLEND-Capstone-Project,代码行数:101,代码来源:customLayers.py


注:本文中的tflearn.activations.get函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。