本文整理汇总了Python中texttable.Texttable.set_precision方法的典型用法代码示例。如果您正苦于以下问题:Python Texttable.set_precision方法的具体用法?Python Texttable.set_precision怎么用?Python Texttable.set_precision使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类texttable.Texttable
的用法示例。
在下文中一共展示了Texttable.set_precision方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: print_price_data
# 需要导入模块: from texttable import Texttable [as 别名]
# 或者: from texttable.Texttable import set_precision [as 别名]
def print_price_data(data):
# Current BTC Price
# --------------------
print '\n%s' % colorize('CaVirtex Market\n---------------', colors.CYAN)
status_color = colors.GREEN if data['net'] > 0 else colors.RED
print '\n%s' % colorize('Price', colors.BLUE)
print '\n%s' % colorize('$%.2f CAD/BTC' % data['current_price'], status_color)
# Latest Trades
# ----------------
print '\n%s\n' % colorize('Latest Trades', colors.BLUE)
trades_table = Texttable()
trades_table.set_deco(Texttable.HEADER)
trades_table.set_precision(2)
trades_table.set_cols_dtype(['f', 'f', 'f', 't'])
trades_table.add_rows(data['latest_trades'])
print trades_table.draw()
# Investment Returns
# ---------------------
print '\n%s' % colorize('Your Investment', colors.BLUE)
print '\nNet: %s' % colorize('$%.2f CAD' % data['net'], status_color)
print '\nVOI: %s' % colorize('$%.2f CAD' % data['voi'], status_color)
print '\nROI: %s' % colorize('%.2f%%' % data['roi'], status_color)
示例2: _dataframe_to_texttable
# 需要导入模块: from texttable import Texttable [as 别名]
# 或者: from texttable.Texttable import set_precision [as 别名]
def _dataframe_to_texttable(df, align=None):
"""Convert data frame to texttable. Sets column widths to the
widest entry in each column."""
ttab = Texttable()
ttab.set_precision(1)
h = [[x for x in df]]
h.extend([x for x in df.to_records(index=False)])
if align:
colWidths = [max(len(x), len(".. class:: {}".format(y))) for x,y in izip(df.columns, align)]
else:
colWidths = [len(x) for x in df.columns]
for row in h:
for i in range(0, len(row)):
if type(row[i]) == str:
colWidths[i] = max([len(str(x)) for x in row[i].split("\n")] + [colWidths[i]])
colWidths[i] = max(len(str(row[i])), colWidths[i])
table_data = []
if align:
for row in h:
table_row = []
i = 0
for col, aln in izip(row, align):
table_row.append(".. class:: {}".format(aln) + " " * colWidths[i] + "{}".format(col))
i = i + 1
table_data.append(table_row)
else:
table_data = h
ttab.add_rows(table_data)
ttab.set_cols_width(colWidths)
# Note: this does not affect the final pdf output
ttab.set_cols_align(["r"] * len(colWidths))
return ttab
示例3: eval_dir
# 需要导入模块: from texttable import Texttable [as 别名]
# 或者: from texttable.Texttable import set_precision [as 别名]
def eval_dir(path, markdown=False, dprefix=False,
evalmethod=None, numlabel=False):
""" Evaluate the results in the dir by MRR
Argument:
dirname -- the path to the diretory containing evaluation results
"""
if evalmethod is None:
ef = mrr
else:
ef = globals()[evalmethod]
files = sorted(os.listdir(path))
names = sorted(set([n.rsplit('.', 1)[0][3:] for n in files
if n.endswith('.res')]),
key=lambda item: (len(item), item))
if dprefix:
prefices = sorted(set([n[:2] for n in files]))
else:
prefices = PREFICES
table = Texttable(max_width=0)
if markdown:
table.set_asmarkdown()
else:
table.set_deco(0)
table.set_cols_dtype(['t'] + ['f'] * len(prefices))
table.set_cols_align(['l'] + ['r'] * len(prefices))
table.set_precision(4)
table.add_rows([['', ] + prefices])
for n in names:
scores = list()
for prefix in prefices:
try:
eva = NP.array([v for v in iterrank(
os.path.join(path, '%s_%s.res' % (prefix, n)))],
dtype=NP.float64)
scores.append(ef(eva))
except IOError:
scores.append('N/A')
if numlabel:
n = ' '.join([m.group() for m in NUMBER.finditer(n)])
table.add_row([n, ] + scores)
print table.draw()
示例4: main
# 需要导入模块: from texttable import Texttable [as 别名]
# 或者: from texttable.Texttable import set_precision [as 别名]
def main():
parser = buildArgsParser()
args = parser.parse_args()
sort_by = args.sort
names = []
results_files = []
hyperparams_files = []
status_files = []
for f in args.results:
exp_folder = f
if os.path.isfile(f):
exp_folder = os.path.dirname(f)
result_file = pjoin(exp_folder, "result.json")
hyperparams_file = pjoin(exp_folder, "hyperparams.json")
status_file = pjoin(exp_folder, "status.json")
if not os.path.isfile(result_file):
print 'Skip: {0} is not a file!'.format(result_file)
continue
if not os.path.isfile(hyperparams_file):
print 'Skip: {0} is not a file!'.format(hyperparams_file)
continue
if not os.path.isfile(status_file):
print 'Skip: {0} is not a file!'.format(status_file)
continue
name = os.path.basename(exp_folder)
if 'hyperparams.json' in os.listdir(os.path.abspath(pjoin(exp_folder, os.path.pardir))):
name = os.path.basename(os.path.abspath(pjoin(exp_folder, os.path.pardir)))
names.append(name)
results_files.append(result_file)
hyperparams_files.append(hyperparams_file)
status_files.append(status_file)
if len([no for no in sort_by if no == 0]) > 0:
parser.error('Column ID are starting at 1!')
# Retrieve headers from hyperparams
headers_hyperparams = set()
headers_results = set()
headers_status = set()
for hyperparams_file, status_file, results_file in zip(hyperparams_files, status_files, results_files):
hyperparams = load_dict_from_json_file(hyperparams_file)
results = load_dict_from_json_file(results_file)
status = load_dict_from_json_file(status_file)
headers_hyperparams |= set(hyperparams.keys())
headers_results |= set(results.keys())
headers_status |= set(status.keys())
headers_hyperparams = sorted(list(headers_hyperparams))
headers_status = sorted(list(headers_status))
# TODO: when generating result.json split 'trainset' scores in two key:
# 'trainset' and 'trainset_std' (same goes for validset and testset).
headers_results |= set(["trainset_std", "validset_std", "testset_std"])
headers_results = sorted(list(headers_results))
headers = headers_hyperparams + headers_status + ["name"] + headers_results
# Build results table
table = Texttable(max_width=0)
table.set_deco(Texttable.HEADER)
table.set_precision(8)
table.set_cols_dtype(['a'] * len(headers))
table.set_cols_align(['c'] * len(headers))
# Headers
table.header([str(i) + "\n" + h for i, h in enumerate(headers, start=1)])
if args.only_header:
print table.draw()
return
# Results
for name, hyperparams_file, status_file, results_file in zip(names, hyperparams_files, status_files, results_files):
hyperparams = load_dict_from_json_file(hyperparams_file)
results = load_dict_from_json_file(results_file)
status = load_dict_from_json_file(status_file)
# Build results table row (hyperparams columns)
row = []
for h in headers_hyperparams:
value = hyperparams.get(h, '')
row.append(value)
for h in headers_status:
value = status.get(h, '')
row.append(value)
row.append(name)
for h in headers_results:
if h in ["trainset", "validset", "testset"]:
value = results.get(h, '')[0]
#.........这里部分代码省略.........
示例5: len
# 需要导入模块: from texttable import Texttable [as 别名]
# 或者: from texttable.Texttable import set_precision [as 别名]
names.append(name)
params = [float(i) for i in row[1:]]
matrix.append(params)
n = len(matrix)
results_matrix = [[0]*n for i in range(n)]
for j in range(n-1):
for i in range(j+1, n):
row1 = matrix[i]
row2 = matrix[j]
score = [0, 0]
for func in lpr:
score[func([row1, row2])[2]] += 1
if score[0] != score[1]:
bigger = (i, j)[score.index(max(score))]
smaller = (i, j)[score.index(min(score))]
results_matrix[smaller][bigger] = 1
table = Texttable(max_width=150)
table.set_deco(Texttable.HEADER)
table.set_precision(1)
table.add_rows([['']+names])
for i in range(n):
table.add_rows([[names[i]]+results_matrix[i]], header=False)
print table.draw()
print 'Best solutions:',
for i in range(n):
if max(zip(*results_matrix)[i]) == 0:
print names[i],
示例6: len
# 需要导入模块: from texttable import Texttable [as 别名]
# 或者: from texttable.Texttable import set_precision [as 别名]
offset += per_page
total_monthly_revenue = []
for type, customers in by_status.iteritems():
print '*' * 80
print 'Subscriptions: ', type, ' - ', len(customers)
print '*' * 80
table = Texttable()
table.set_deco(Texttable.HEADER)
table.set_cols_align(['l', 'r', 'l', 'r'])
table.header(['Customer', 'Plan', 'Coupon', 'Monthly'])
table.set_precision(2)
for c in customers:
row = []
row.append(c.description or c.email)
monthly = 0
if c.subscription:
amount = '$%d' % (c.subscription.quantity * c.subscription.plan.amount / 100)
if c.subscription.plan.interval == 'month':
monthly = c.subscription.quantity * c.subscription.plan.amount
elif c.subscription.plan.interval == 'year':
if c.subscription.status == 'active':
monthly = c.subscription.quantity * c.subscription.plan.amount / 12
amount += ' ANNUAL'
else:
示例7: main
# 需要导入模块: from texttable import Texttable [as 别名]
# 或者: from texttable.Texttable import set_precision [as 别名]
#.........这里部分代码省略.........
header.append("Newton's: x_n")
if args.func_vals:
iterates.append(f_n)
header.append("Newton's: f(x_n)")
if 'halley' in args.methods:
x_n, f_n = rm.halleys_method(M,eps,delta,f,fp,fpp,x_0)
if args.verbosity >= 1:
print "\nHalley's method:"
print "\tNumber of iterations: " + str(len(x_n))
print "\tx_"+str(len(x_n)-1)+" = "+str(x_n[-1])
print "\tf(x_"+str(len(f_n)-1)+") = "+str(f_n[-1])
iterates.append(x_n)
header.append("Halley's: x_n")
if args.func_vals:
iterates.append(f_n)
header.append("Halley's: f(x_n)")
if 'steffenson' in args.methods:
x_n, f_n = rm.steffensons_method(M,eps,delta,f,x_0)
if args.verbosity >= 1:
print "\nSteffenson's method:"
print "\tNumber of iterations: " + str(len(x_n))
print "\tx_"+str(len(x_n)-1)+" = "+str(x_n[-1])
print "\tf(x_"+str(len(f_n)-1)+") = "+str(f_n[-1])
iterates.append(x_n)
header.append("Steffenson's: x_n")
if args.func_vals:
iterates.append(f_n)
header.append("Steffenson's: f(x_n)")
if 'secant' in args.methods:
x_n, f_n = rm.secant_method(M,eps,delta,f,x_0,x_1)
if args.verbosity >= 1:
print "\nSecant method:"
print "\tNumber of iterations: " + str(len(x_n))
print "\tx_"+str(len(x_n)-1)+" = "+str(x_n[-1])
print "\tf(x_"+str(len(f_n)-1)+") = "+str(f_n[-1])
iterates.append(x_n)
header.append('Secant: x_n')
if args.func_vals:
iterates.append(f_n)
header.append('Secant: f(x_n)')
if 'secant_swap' in args.methods:
x_n, f_n = rm.secant_method_swap(M,eps,delta,f,x_0,x_1)
if args.verbosity >= 1:
print "\nSecant method (swap):"
print "\tNumber of iterations: " + str(len(x_n))
print "\tx_"+str(len(x_n)-1)+" = "+str(x_n[-1])
print "\tf(x_"+str(len(f_n)-1)+") = "+str(f_n[-1])
iterates.append(x_n)
header.append('Secant swap: x_n')
if args.func_vals:
iterates.append(f_n)
header.append('Secant swap: f(x_n)')
# create a texttable and add the records
table = Texttable()
# set the table style
table.set_deco(Texttable.HEADER)
# set precision of floating point data type
table.set_precision(7)
# set column data types in table
table.set_cols_dtype(['i']+['f' for i in iterates])
# set the table column alignment
table.set_cols_align(['r']+['r' for i in iterates])
# add table column headers
table.header(header)
# add the records to the table
i = 0
for ROW in izip_longest(*iterates):
table.add_row([i]+list(ROW))
i=i+1
# draw table
print table.draw()
if args.csv != None:
# create CSV writer
with open(args.csv, 'wb') as csvfile:
writer = csv.writer(csvfile, delimiter=',',
quotechar='|', quoting=csv.QUOTE_MINIMAL)
writer.writerow(header)
for RECORD in records:
writer.writerow(RECORD)