当前位置: 首页>>代码示例>>Python>>正文


Python NaiveBayesClassifier.accuracy方法代码示例

本文整理汇总了Python中text.classifiers.NaiveBayesClassifier.accuracy方法的典型用法代码示例。如果您正苦于以下问题:Python NaiveBayesClassifier.accuracy方法的具体用法?Python NaiveBayesClassifier.accuracy怎么用?Python NaiveBayesClassifier.accuracy使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在text.classifiers.NaiveBayesClassifier的用法示例。


在下文中一共展示了NaiveBayesClassifier.accuracy方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: nb

# 需要导入模块: from text.classifiers import NaiveBayesClassifier [as 别名]
# 或者: from text.classifiers.NaiveBayesClassifier import accuracy [as 别名]
def nb(data):
  # check out params
  
  # divide data into 4 = 3 + 1, 3 for train, 1 for test
  train = data[0: (len(data) / 4) * 3]
  test = data[(len(data) / 4) * 3:]
  
  print "Training ..."
  classifier = NaiveBayesClassifier(train)
  print "Testing ..."
  print "Accuracy: ", classifier.accuracy(test)
  
  """
开发者ID:csrgxtu,项目名称:maxent,代码行数:15,代码来源:NBTextBlob.py

示例2: TestNaiveBayesClassifier

# 需要导入模块: from text.classifiers import NaiveBayesClassifier [as 别名]
# 或者: from text.classifiers.NaiveBayesClassifier import accuracy [as 别名]
class TestNaiveBayesClassifier(unittest.TestCase):

    def setUp(self):
        self.train_set =  [
              ('I love this car', 'positive'),
              ('This view is amazing', 'positive'),
              ('I feel great this morning', 'positive'),
              ('I am so excited about the concert', 'positive'),
              ('He is my best friend', 'positive'),
              ('I do not like this car', 'negative'),
              ('This view is horrible', 'negative'),
              ('I feel tired this morning', 'negative'),
              ('I am not looking forward to the concert', 'negative'),
              ('He is my enemy', 'negative')
        ]
        self.classifier = NaiveBayesClassifier(self.train_set)
        self.test_set = [('I feel happy this morning', 'positive'),
                        ('Larry is my friend.', 'positive'),
                        ('I do not like that man.', 'negative'),
                        ('My house is not great.', 'negative'),
                        ('Your song is annoying.', 'negative')]

    def test_basic_extractor(self):
        text = "I feel happy this morning."
        feats = basic_extractor(text, self.train_set)
        assert_true(feats["contains(feel)"])
        assert_true(feats['contains(morning)'])
        assert_false(feats["contains(amazing)"])

    def test_default_extractor(self):
        text = "I feel happy this morning."
        assert_equal(self.classifier.extract_features(text), basic_extractor(text, self.train_set))

    def test_classify(self):
        res = self.classifier.classify("I feel happy this morning")
        assert_equal(res, 'positive')
        assert_equal(len(self.classifier.train_set), len(self.train_set))

    def test_prob_classify(self):
        res = self.classifier.prob_classify("I feel happy this morning")
        assert_equal(res.max(), "positive")
        assert_true(res.prob("positive") > res.prob("negative"))

    def test_accuracy(self):
        acc = self.classifier.accuracy(self.test_set)
        assert_true(isinstance(acc, float))

    def test_update(self):
        res1 = self.classifier.prob_classify("lorem ipsum")
        original_length = len(self.classifier.train_set)
        self.classifier.update([("lorem ipsum", "positive")])
        new_length = len(self.classifier.train_set)
        res2 = self.classifier.prob_classify("lorem ipsum")
        assert_true(res2.prob("positive") > res1.prob("positive"))
        assert_equal(original_length + 1, new_length)

    def test_show_informative_features(self):
        feats = self.classifier.show_informative_features()

    def test_informative_features(self):
        feats = self.classifier.informative_features(3)
        assert_true(isinstance(feats, list))
        assert_true(isinstance(feats[0], tuple))

    def test_custom_feature_extractor(self):
        cl = NaiveBayesClassifier(self.train_set, custom_extractor)
        cl.classify("Yay! I'm so happy it works.")
        assert_equal(cl.train_features[0][1], 'positive')
开发者ID:robertlayton,项目名称:TextBlob,代码行数:70,代码来源:test_classifiers.py

示例3: NaiveBayesClassifier

# 需要导入模块: from text.classifiers import NaiveBayesClassifier [as 别名]
# 或者: from text.classifiers.NaiveBayesClassifier import accuracy [as 别名]
]
test = [
    ('The beer was good.', 'pos'),
    ('I do not enjoy my job', 'neg'),
    ("I ain't feeling dandy today.", 'neg'),
    ("I feel amazing!", 'pos'),
    ('Gary is a friend of mine.', 'pos'),
    ("I can't believe I'm doing this.", 'neg')
]
 
cl = NaiveBayesClassifier(train)
 
# Classify some text
print(cl.classify("Their burgers are amazing."))  # "pos"
print(cl.classify("I don't like their pizza."))   # "neg"
 
# Classify a TextBlob
blob = TextBlob("The beer was amazing. But the hangover was horrible. "
                "My boss was not pleased.", classifier=cl)
print(blob)
print(blob.classify())
 
for sentence in blob.sentences:
    print(sentence)
    print(sentence.classify())
 
# Compute accuracy
print("Accuracy: {0}".format(cl.accuracy(test)))
 
# Show 5 most informative features
cl.show_informative_features(5)
开发者ID:jluc19,项目名称:disambiguator,代码行数:33,代码来源:shit.py

示例4: NaiveBayesClassifier

# 需要导入模块: from text.classifiers import NaiveBayesClassifier [as 别名]
# 或者: from text.classifiers.NaiveBayesClassifier import accuracy [as 别名]
('He is my sworn enemy!', 'neg'),
('My boss is horrible.', 'neg')
]
test = [
('The beer was good.', 'pos'),
('I do not enjoy my job', 'neg'),
("I ain't feeling dandy today.", 'neg'),
("I feel amazing!", 'pos'),
('Gary is a friend of mine.', 'pos'),
("I can't believe I'm doing this.", 'neg')
]
print 'initial training going on....'
cl = NaiveBayesClassifier(train)
print 'initial training done.'
# Grab some movie review data
print 'now gathering reviews...'
reviews = [(list(movie_reviews.words(fileid)), category)
for category in movie_reviews.categories()
for fileid in movie_reviews.fileids(category)]
random.shuffle(reviews)
new_train = reviews[0:200]
print 'reviews gathered.'
# Update the classifier with the new training data
print 'now training using the new data...'
cl.update(new_train)
print 'trained and ready!'
print cl.classify("I hated the movie and hated the food")
# Compute accuracy
accuracy = cl.accuracy(test)
print("Accuracy: {0}".format(accuracy))
开发者ID:anishmashankar,项目名称:experiments,代码行数:32,代码来源:sentana.py

示例5: test_train_from_lists_of_words

# 需要导入模块: from text.classifiers import NaiveBayesClassifier [as 别名]
# 或者: from text.classifiers.NaiveBayesClassifier import accuracy [as 别名]
 def test_train_from_lists_of_words(self):
     # classifier can be trained on lists of words instead of strings
     train = [(doc.split(), label) for doc, label in train_set]
     classifier = NaiveBayesClassifier(train)
     assert_equal(classifier.accuracy(test_set),
                     self.classifier.accuracy(test_set))
开发者ID:shidao-fm,项目名称:TextBlob,代码行数:8,代码来源:test_classifiers.py

示例6: TestNaiveBayesClassifier

# 需要导入模块: from text.classifiers import NaiveBayesClassifier [as 别名]
# 或者: from text.classifiers.NaiveBayesClassifier import accuracy [as 别名]
class TestNaiveBayesClassifier(unittest.TestCase):

    def setUp(self):
        self.classifier = NaiveBayesClassifier(train_set)

    def test_basic_extractor(self):
        text = "I feel happy this morning."
        feats = basic_extractor(text, train_set)
        assert_true(feats["contains(feel)"])
        assert_true(feats['contains(morning)'])
        assert_false(feats["contains(amazing)"])

    def test_default_extractor(self):
        text = "I feel happy this morning."
        assert_equal(self.classifier.extract_features(text), basic_extractor(text, train_set))

    def test_classify(self):
        res = self.classifier.classify("I feel happy this morning")
        assert_equal(res, 'positive')
        assert_equal(len(self.classifier.train_set), len(train_set))

    def test_classify_a_list_of_words(self):
        res = self.classifier.classify(["I", "feel", "happy", "this", "morning"])
        assert_equal(res, "positive")

    def test_train_from_lists_of_words(self):
        # classifier can be trained on lists of words instead of strings
        train = [(doc.split(), label) for doc, label in train_set]
        classifier = NaiveBayesClassifier(train)
        assert_equal(classifier.accuracy(test_set),
                        self.classifier.accuracy(test_set))

    def test_prob_classify(self):
        res = self.classifier.prob_classify("I feel happy this morning")
        assert_equal(res.max(), "positive")
        assert_true(res.prob("positive") > res.prob("negative"))

    def test_accuracy(self):
        acc = self.classifier.accuracy(test_set)
        assert_true(isinstance(acc, float))

    def test_update(self):
        res1 = self.classifier.prob_classify("lorem ipsum")
        original_length = len(self.classifier.train_set)
        self.classifier.update([("lorem ipsum", "positive")])
        new_length = len(self.classifier.train_set)
        res2 = self.classifier.prob_classify("lorem ipsum")
        assert_true(res2.prob("positive") > res1.prob("positive"))
        assert_equal(original_length + 1, new_length)

    def test_labels(self):
        labels = self.classifier.labels()
        assert_true("positive" in labels)
        assert_true("negative" in labels)

    def test_show_informative_features(self):
        feats = self.classifier.show_informative_features()

    def test_informative_features(self):
        feats = self.classifier.informative_features(3)
        assert_true(isinstance(feats, list))
        assert_true(isinstance(feats[0], tuple))

    def test_custom_feature_extractor(self):
        cl = NaiveBayesClassifier(train_set, custom_extractor)
        cl.classify("Yay! I'm so happy it works.")
        assert_equal(cl.train_features[0][1], 'positive')

    def test_init_with_csv_file(self):
        cl = NaiveBayesClassifier(CSV_FILE, format="csv")
        assert_equal(cl.classify("I feel happy this morning"), 'pos')
        training_sentence = cl.train_set[0][0]
        assert_true(isinstance(training_sentence, unicode))

    def test_init_with_csv_file_without_format_specifier(self):
        cl = NaiveBayesClassifier(CSV_FILE)
        assert_equal(cl.classify("I feel happy this morning"), 'pos')
        training_sentence = cl.train_set[0][0]
        assert_true(isinstance(training_sentence, unicode))

    def test_init_with_json_file(self):
        cl = NaiveBayesClassifier(JSON_FILE, format="json")
        assert_equal(cl.classify("I feel happy this morning"), 'pos')
        training_sentence = cl.train_set[0][0]
        assert_true(isinstance(training_sentence, unicode))

    def test_init_with_json_file_without_format_specifier(self):
        cl = NaiveBayesClassifier(JSON_FILE)
        assert_equal(cl.classify("I feel happy this morning"), 'pos')
        training_sentence = cl.train_set[0][0]
        assert_true(isinstance(training_sentence, unicode))

    def test_accuracy_on_a_csv_file(self):
        a = self.classifier.accuracy(CSV_FILE)
        assert_true(isinstance(a, float))

    def test_accuracy_on_json_file(self):
        a = self.classifier.accuracy(JSON_FILE)
        assert_true(isinstance(a, float))

#.........这里部分代码省略.........
开发者ID:shidao-fm,项目名称:TextBlob,代码行数:103,代码来源:test_classifiers.py

示例7: NaiveBayesClassifier

# 需要导入模块: from text.classifiers import NaiveBayesClassifier [as 别名]
# 或者: from text.classifiers.NaiveBayesClassifier import accuracy [as 别名]
    ('He is my sworn enemy!', 'neg'),
    ('My boss is horrible.', 'neg')
]
test = [
    ('The beer was good.', 'pos'),
    ('I do not enjoy my job', 'neg'),
    ("I ain't feeling dandy today.", 'neg'),
    ("I feel amazing!", 'pos'),
    ('Gary is a friend of mine.', 'pos'),
    ("I can't believe I'm doing this.", 'neg')
]
 
cl = NaiveBayesClassifier(train)
 
# Grab some movie review data
reviews = [(list(movie_reviews.words(fileid)), category)
              for category in movie_reviews.categories()
              for fileid in movie_reviews.fileids(category)]
random.shuffle(reviews)
new_train, new_test = reviews[0:100], reviews[101:200]
 
# Update the classifier with the new training data
cl.update(new_train)
 
# Compute accuracy
accuracy = cl.accuracy(test + new_test)
print("Accuracy: {0}".format(accuracy))
 
# Show 5 most informative features
cl.show_informative_features(15)
开发者ID:malab,项目名称:test-python,代码行数:32,代码来源:text_classif2.py


注:本文中的text.classifiers.NaiveBayesClassifier.accuracy方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。