本文整理汇总了Python中tests.utils.helpers.random_string函数的典型用法代码示例。如果您正苦于以下问题:Python random_string函数的具体用法?Python random_string怎么用?Python random_string使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了random_string函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: setUpClass
def setUpClass(cls):
default_user = helpers.default_user()
cls.job = models.OqJob(owner=default_user)
cls.job.save()
# dmg dist per asset
cls.ddpa_output = models.Output(
owner=default_user, oq_job=cls.job,
display_name='Test dmg dist per asset',
output_type='dmg_dist_per_asset',
db_backed=True)
cls.ddpa_output.save()
cls.ddpa = models.DmgDistPerAsset(
output=cls.ddpa_output, dmg_states=cls.DMG_STATES)
cls.ddpa.save()
# We also need some sample exposure data records (to satisfy the dmg
# dist per asset FK).
test_input = models.Input(
owner=default_user, input_type='exposure', path='fake', size=0)
test_input.save()
i2j = models.Input2job(input=test_input, oq_job=cls.job)
i2j.save()
exp_model = models.ExposureModel(
owner=default_user, input=test_input, name='test-exp-model',
category='economic loss', stco_type='per_asset', stco_unit='CHF')
exp_model.save()
test_site = shapes.Site(3.14, 2.17)
cls.exp_data = models.ExposureData( # Asset
exposure_model=exp_model, asset_ref=helpers.random_string(),
taxonomy=helpers.random_string(), number_of_units=37,
site=test_site.point.to_wkt(), stco=1234.56)
cls.exp_data.save()
# dmg dist per taxonomy
cls.ddpt_output = models.Output(
owner=default_user, oq_job=cls.job,
display_name='Test dmg dist per taxonomy',
output_type='dmg_dist_per_taxonomy',
db_backed=True)
cls.ddpt_output.save()
cls.ddpt = models.DmgDistPerTaxonomy(
output=cls.ddpt_output, dmg_states=cls.DMG_STATES)
cls.ddpt.save()
# total dmg dist
cls.ddt_output = models.Output(
owner=default_user, oq_job=cls.job,
display_name='Test dmg dist total',
output_type='dmg_dist_total',
db_backed=True)
cls.ddt_output.save()
cls.ddt = models.DmgDistTotal(
output=cls.ddt_output, dmg_states=cls.DMG_STATES)
cls.ddt.save()
示例2: test_exposure_data_with_coco_and_unit_type_count
def test_exposure_data_with_coco_and_unit_type_count(self):
# the content cost may be present when unit_type is set to "count"
site = shapes.Site(-122.5000, 37.5000)
edata = models.ExposureData(
exposure_model=self.mdl, asset_ref=helpers.random_string(),
taxonomy=helpers.random_string(), number_of_units=111,
site=site.point.to_wkt(), coco=112)
edata.save()
示例3: test_exposure_data_unit_type_count
def test_exposure_data_unit_type_count(self):
# the unit_type is set to "count" and we can insert an `exposure_data`
# row as long as we omit the area, reco and stco properties.
site = shapes.Site(-122.5000, 37.5000)
edata = models.ExposureData(
exposure_model=self.mdl, asset_ref=helpers.random_string(),
taxonomy=helpers.random_string(), number_of_units=111,
site=site.point.to_wkt())
edata.save()
示例4: test_exposure_data_with_no_stco_and_population
def test_exposure_data_with_no_stco_and_population(self):
# the structural cost needs not be present when we calculate exposure
# in terms of population
self.mdl.stco_type = None
self.mdl.stco_unit = None
self.mdl.category = "population"
self.mdl.save()
site = shapes.Site(-122.5000, 37.5000)
edata = models.ExposureData(
exposure_model=self.mdl, asset_ref=helpers.random_string(),
taxonomy=helpers.random_string(), number_of_units=111,
site=site.point.to_wkt())
edata.save()
示例5: test_exposure_data_with_coco_type_but_no_value
def test_exposure_data_with_coco_type_but_no_value(self):
# if the content cost type is set the value must be set as well.
site = shapes.Site(-122.5000, 37.5000)
edata = models.ExposureData(
exposure_model=self.mdl, asset_ref=helpers.random_string(),
taxonomy=helpers.random_string(), number_of_units=111,
site=site.point.to_wkt())
try:
edata.save()
except DatabaseError, de:
self.assertEqual(
"Exception: contents cost is mandatory for "
"<coco_type=per_asset> (exposure_data)",
de.args[0].split('\n', 1)[0])
transaction.rollback()
示例6: test_exposure_data_with_area_and_unit_type_count
def test_exposure_data_with_area_and_unit_type_count(self):
# the area cost must not be present when unit_type is set to "count"
site = shapes.Site(-122.5000, 37.5000)
edata = models.ExposureData(
exposure_model=self.mdl, asset_ref=helpers.random_string(),
taxonomy=helpers.random_string(), number_of_units=111,
site=site.point.to_wkt(), area=112)
try:
edata.save()
except DatabaseError, de:
self.assertEqual(
"Exception: We are in counting mode: neither of these must "
"be set ['area'] (exposure_data)",
de.args[0].split('\n', 1)[0])
transaction.rollback()
示例7: test_ddpt_insert_valid_dmg_state
def test_ddpt_insert_valid_dmg_state(self):
for ds in self.DMG_STATES:
dd = models.DmgDistPerTaxonomyData(
dmg_dist_per_taxonomy=self.ddpt,
taxonomy=helpers.random_string(), dmg_state=ds, mean=0.0,
stddev=0.0)
dd.save()
示例8: setUpClass
def setUpClass(cls):
cls.job = engine.prepare_job()
jp, _, _ = engine.import_job_profile(RISK_DEMO_CONFIG_FILE, cls.job)
cls.job_ctxt = helpers.create_job({}, job_id=cls.job.id,
oq_job_profile=jp, oq_job=cls.job)
calc = ClassicalRiskCalculator(cls.job_ctxt)
calc.store_exposure_assets()
[input] = models.inputs4job(cls.job.id, input_type="exposure")
model = input.model()
assets = model.exposuredata_set.filter(taxonomy="af/ctc-D/LR")
# Add some more assets.
coos = [(10.000155392289116, 46.546194318563),
(10.222034128255, 46.0071299176413),
(10.520376165581, 46.247463385278)]
for lat, lon in coos:
site = shapes.Site(lat, lon)
cls.sites.append(site)
if assets:
continue
location = geos.GEOSGeometry(site.point.to_wkt())
asset = models.ExposureData(
exposure_model=model, taxonomy="af/ctc-D/LR",
asset_ref=helpers.random_string(6), stco=lat * 2,
site=location, reco=1.1 * lon)
asset.save()
示例9: test_ddpt_update_invalid_dmg_state
def test_ddpt_update_invalid_dmg_state(self):
dd = models.DmgDistPerTaxonomy(
taxonomy=helpers.random_string(),
dmg_state=self.dmg_states['extensive'], mean=0.0,
stddev=0.0)
dd.save()
self._test_insert_update_invalid(dd, 'dmg_dist_per_taxonomy')
示例10: test_ddpt_insert_valid_dmg_state
def test_ddpt_insert_valid_dmg_state(self):
for ds in self.dmg_states.itervalues():
dd = models.DmgDistPerTaxonomy(
taxonomy=helpers.random_string(),
dmg_state=ds, mean=0.0,
stddev=0.0)
dd.save()
示例11: test_exposure_data_with_no_stco_and_category_not_population
def test_exposure_data_with_no_stco_and_category_not_population(self):
# the structural cost must be present when we calculate exposure
# in terms other than population.
self.mdl.save()
site = shapes.Site(-122.4000, 37.6000)
edata = models.ExposureData(
exposure_model=self.mdl, asset_ref=helpers.random_string(),
taxonomy=helpers.random_string(), number_of_units=111,
site=site.point.to_wkt())
try:
edata.save()
except DatabaseError, de:
self.assertEqual(
"Exception: structural cost is mandatory for category "
"<economic loss> (exposure_data)",
de.args[0].split('\n', 1)[0])
transaction.rollback()
示例12: test_ddpt_update_valid_dmg_state
def test_ddpt_update_valid_dmg_state(self):
dd = models.DmgDistPerTaxonomy(
taxonomy=helpers.random_string(),
dmg_state=self.dmg_states['extensive'], mean=0.0,
stddev=0.0)
dd.save()
dd.dmg_state = self.dmg_states['complete']
dd.save()
示例13: test_del_haz_calc_no_access
def test_del_haz_calc_no_access(self):
# Test the case where we try to delete a hazard calculation which does
# not belong to current user.
# In this case, deletion is now allowed and should raise an exception.
hazard_job = helpers.get_hazard_job(self.hazard_cfg,
username=helpers.random_string())
hazard_calc = hazard_job.hazard_calculation
self.assertRaises(RuntimeError, engine.del_haz_calc, hazard_calc.id)
示例14: test_prepare_user_exists
def test_prepare_user_exists(self):
user_name = helpers.random_string()
existing_user = models.OqUser(
user_name=user_name, full_name=user_name, organization_id=1
)
existing_user.save()
user = engine2.prepare_user(user_name)
self.assertEqual(existing_user.id, user.id)
示例15: test_exposure_stco_type_but_no_stco_value
def test_exposure_stco_type_but_no_stco_value(self):
# the structural cost must be present if the structural cost type
# is set.
self.mdl.category = "population"
self.mdl.save()
site = shapes.Site(-121.6000, 38.4000)
edata = models.ExposureData(
exposure_model=self.mdl, asset_ref=helpers.random_string(),
taxonomy=helpers.random_string(), number_of_units=24,
site=site.point.to_wkt())
try:
edata.save()
except DatabaseError, de:
self.assertEqual(
"Exception: structural cost is mandatory for "
"<stco_type=aggregated> (exposure_data)",
de.args[0].split('\n', 1)[0])
transaction.rollback()