当前位置: 首页>>代码示例>>Python>>正文


Python timeout.timeout函数代码示例

本文整理汇总了Python中tests.integ.timeout.timeout函数的典型用法代码示例。如果您正苦于以下问题:Python timeout函数的具体用法?Python timeout怎么用?Python timeout使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了timeout函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_lda

def test_lda(sagemaker_session):
    with timeout(minutes=15):
        data_path = os.path.join(DATA_DIR, 'lda')
        data_filename = 'nips-train_1.pbr'

        with open(os.path.join(data_path, data_filename), 'rb') as f:
            all_records = read_records(f)

        # all records must be same
        feature_num = int(all_records[0].features['values'].float32_tensor.shape[0])

        lda = LDA(role='SageMakerRole', train_instance_type='ml.c4.xlarge', num_topics=10,
                  sagemaker_session=sagemaker_session, base_job_name='test-lda')

        record_set = prepare_record_set_from_local_files(data_path, lda.data_location,
                                                         len(all_records), feature_num, sagemaker_session)
        lda.fit(record_set, 100)

    endpoint_name = name_from_base('lda')
    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        model = LDAModel(lda.model_data, role='SageMakerRole', sagemaker_session=sagemaker_session)
        predictor = model.deploy(1, 'ml.c4.xlarge', endpoint_name=endpoint_name)

        predict_input = np.random.rand(1, feature_num)
        result = predictor.predict(predict_input)

        assert len(result) == 1
        for record in result:
            assert record.label["topic_mixture"] is not None
开发者ID:duasahil8,项目名称:sagemaker-python-sdk,代码行数:29,代码来源:test_lda.py

示例2: test_cifar

def test_cifar(sagemaker_session, tf_full_version):
    with timeout(minutes=45):
        script_path = os.path.join(DATA_DIR, 'cifar_10', 'source')

        dataset_path = os.path.join(DATA_DIR, 'cifar_10', 'data')

        estimator = TensorFlow(entry_point='resnet_cifar_10.py', source_dir=script_path, role='SageMakerRole',
                               framework_version=tf_full_version, training_steps=500, evaluation_steps=5,
                               train_instance_count=2, train_instance_type='ml.p2.xlarge',
                               sagemaker_session=sagemaker_session, train_max_run=45 * 60,
                               base_job_name='test-cifar')

        inputs = estimator.sagemaker_session.upload_data(path=dataset_path, key_prefix='data/cifar10')
        estimator.fit(inputs, logs=False)
        print('job succeeded: {}'.format(estimator.latest_training_job.name))

    endpoint_name = estimator.latest_training_job.name
    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        predictor = estimator.deploy(initial_instance_count=1, instance_type='ml.p2.xlarge')
        predictor.serializer = PickleSerializer()
        predictor.content_type = PICKLE_CONTENT_TYPE

        data = np.random.randn(32, 32, 3)
        predict_response = predictor.predict(data)
        assert len(predict_response['outputs']['probabilities']['floatVal']) == 10
开发者ID:cheesama,项目名称:sagemaker-python-sdk,代码行数:25,代码来源:test_tf_cifar.py

示例3: test_async_fit

def test_async_fit(sagemaker_session):
    endpoint_name = 'test-mxnet-attach-deploy-{}'.format(sagemaker_timestamp())

    with timeout(minutes=5):
        script_path = os.path.join(DATA_DIR, 'mxnet_mnist', 'mnist.py')
        data_path = os.path.join(DATA_DIR, 'mxnet_mnist')

        mx = MXNet(entry_point=script_path, role='SageMakerRole',
                   train_instance_count=1, train_instance_type='ml.c4.xlarge',
                   sagemaker_session=sagemaker_session)

        train_input = mx.sagemaker_session.upload_data(path=os.path.join(data_path, 'train'),
                                                       key_prefix='integ-test-data/mxnet_mnist/train')
        test_input = mx.sagemaker_session.upload_data(path=os.path.join(data_path, 'test'),
                                                      key_prefix='integ-test-data/mxnet_mnist/test')

        mx.fit({'train': train_input, 'test': test_input}, wait=False)
        training_job_name = mx.latest_training_job.name

        print("Waiting to re-attach to the training job: %s" % training_job_name)
        time.sleep(20)

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        print("Re-attaching now to: %s" % training_job_name)
        estimator = MXNet.attach(training_job_name=training_job_name, sagemaker_session=sagemaker_session)
        predictor = estimator.deploy(1, 'ml.m4.xlarge', endpoint_name=endpoint_name)
        data = numpy.zeros(shape=(1, 1, 28, 28))
        predictor.predict(data)
开发者ID:duasahil8,项目名称:sagemaker-python-sdk,代码行数:28,代码来源:test_mxnet_train.py

示例4: test_factorization_machines

def test_factorization_machines(sagemaker_session):
    with timeout(minutes=15):
        data_path = os.path.join(DATA_DIR, 'one_p_mnist', 'mnist.pkl.gz')
        pickle_args = {} if sys.version_info.major == 2 else {'encoding': 'latin1'}

        # Load the data into memory as numpy arrays
        with gzip.open(data_path, 'rb') as f:
            train_set, _, _ = pickle.load(f, **pickle_args)

        fm = FactorizationMachines(role='SageMakerRole', train_instance_count=1,
                                   train_instance_type='ml.c4.xlarge',
                                   num_factors=10, predictor_type='regressor',
                                   epochs=2, clip_gradient=1e2, eps=0.001, rescale_grad=1.0 / 100,
                                   sagemaker_session=sagemaker_session, base_job_name='test-fm')

        # training labels must be 'float32'
        fm.fit(fm.record_set(train_set[0][:200], train_set[1][:200].astype('float32')))

    endpoint_name = name_from_base('fm')
    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        model = FactorizationMachinesModel(fm.model_data, role='SageMakerRole', sagemaker_session=sagemaker_session)
        predictor = model.deploy(1, 'ml.c4.xlarge', endpoint_name=endpoint_name)
        result = predictor.predict(train_set[0][:10])

        assert len(result) == 10
        for record in result:
            assert record.label["score"] is not None
开发者ID:duasahil8,项目名称:sagemaker-python-sdk,代码行数:27,代码来源:test_factorization_machines.py

示例5: test_tf_async

def test_tf_async(sagemaker_session):
    with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES):
        script_path = os.path.join(DATA_DIR, 'iris', 'iris-dnn-classifier.py')

        estimator = TensorFlow(entry_point=script_path,
                               role='SageMakerRole',
                               training_steps=1,
                               evaluation_steps=1,
                               hyperparameters={'input_tensor_name': 'inputs'},
                               train_instance_count=1,
                               train_instance_type='ml.c4.xlarge',
                               sagemaker_session=sagemaker_session,
                               base_job_name='test-tf')

        inputs = estimator.sagemaker_session.upload_data(path=DATA_PATH, key_prefix='integ-test-data/tf_iris')
        estimator.fit(inputs, wait=False)
        training_job_name = estimator.latest_training_job.name
        time.sleep(20)

    endpoint_name = training_job_name
    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        estimator = TensorFlow.attach(training_job_name=training_job_name, sagemaker_session=sagemaker_session)
        json_predictor = estimator.deploy(initial_instance_count=1, instance_type='ml.c4.xlarge',
                                          endpoint_name=endpoint_name)

        result = json_predictor.predict([6.4, 3.2, 4.5, 1.5])
        print('predict result: {}'.format(result))
开发者ID:cheesama,项目名称:sagemaker-python-sdk,代码行数:27,代码来源:test_tf.py

示例6: test_tuning_mxnet

def test_tuning_mxnet(sagemaker_session):
    with timeout(minutes=TUNING_DEFAULT_TIMEOUT_MINUTES):
        script_path = os.path.join(DATA_DIR, 'mxnet_mnist', 'tuning.py')
        data_path = os.path.join(DATA_DIR, 'mxnet_mnist')

        estimator = MXNet(entry_point=script_path,
                          role='SageMakerRole',
                          train_instance_count=1,
                          train_instance_type='ml.m4.xlarge',
                          sagemaker_session=sagemaker_session,
                          base_job_name='tune-mxnet')

        hyperparameter_ranges = {'learning_rate': ContinuousParameter(0.01, 0.2)}
        objective_metric_name = 'Validation-accuracy'
        metric_definitions = [{'Name': 'Validation-accuracy', 'Regex': 'Validation-accuracy=([0-9\\.]+)'}]
        tuner = HyperparameterTuner(estimator, objective_metric_name, hyperparameter_ranges, metric_definitions,
                                    max_jobs=4, max_parallel_jobs=2)

        train_input = estimator.sagemaker_session.upload_data(path=os.path.join(data_path, 'train'),
                                                              key_prefix='integ-test-data/mxnet_mnist/train')
        test_input = estimator.sagemaker_session.upload_data(path=os.path.join(data_path, 'test'),
                                                             key_prefix='integ-test-data/mxnet_mnist/test')
        tuner.fit({'train': train_input, 'test': test_input})

        print('Started hyperparameter tuning job with name:' + tuner.latest_tuning_job.name)

        time.sleep(15)
        tuner.wait()

    best_training_job = tuner.best_training_job()
    with timeout_and_delete_endpoint_by_name(best_training_job, sagemaker_session):
        predictor = tuner.deploy(1, 'ml.c4.xlarge')
        data = np.zeros(shape=(1, 1, 28, 28))
        predictor.predict(data)
开发者ID:cheesama,项目名称:sagemaker-python-sdk,代码行数:34,代码来源:test_tuner.py

示例7: test_knn_regressor

def test_knn_regressor(sagemaker_session):
    with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES):
        data_path = os.path.join(DATA_DIR, 'one_p_mnist', 'mnist.pkl.gz')
        pickle_args = {} if sys.version_info.major == 2 else {'encoding': 'latin1'}

        # Load the data into memory as numpy arrays
        with gzip.open(data_path, 'rb') as f:
            train_set, _, _ = pickle.load(f, **pickle_args)

        knn = KNN(role='SageMakerRole', train_instance_count=1,
                  train_instance_type='ml.c4.xlarge',
                  k=10, predictor_type='regressor', sample_size=500,
                  sagemaker_session=sagemaker_session, base_job_name='test-knn-rr')

        # training labels must be 'float32'
        knn.fit(knn.record_set(train_set[0][:200], train_set[1][:200].astype('float32')))

    endpoint_name = name_from_base('knn')
    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        model = KNNModel(knn.model_data, role='SageMakerRole', sagemaker_session=sagemaker_session)
        predictor = model.deploy(1, 'ml.c4.xlarge', endpoint_name=endpoint_name)
        result = predictor.predict(train_set[0][:10])

        assert len(result) == 10
        for record in result:
            assert record.label["score"] is not None
开发者ID:cheesama,项目名称:sagemaker-python-sdk,代码行数:26,代码来源:test_knn.py

示例8: test_tf

def test_tf(sagemaker_session, tf_full_version):
    with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES):
        script_path = os.path.join(DATA_DIR, 'iris', 'iris-dnn-classifier.py')

        estimator = TensorFlow(entry_point=script_path,
                               role='SageMakerRole',
                               framework_version=tf_full_version,
                               training_steps=1,
                               evaluation_steps=1,
                               hyperparameters={'input_tensor_name': 'inputs'},
                               train_instance_count=1,
                               train_instance_type='ml.c4.xlarge',
                               sagemaker_session=sagemaker_session,
                               base_job_name='test-tf')

        inputs = sagemaker_session.upload_data(path=DATA_PATH, key_prefix='integ-test-data/tf_iris')
        estimator.fit(inputs)
        print('job succeeded: {}'.format(estimator.latest_training_job.name))

    endpoint_name = estimator.latest_training_job.name
    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        json_predictor = estimator.deploy(initial_instance_count=1, instance_type='ml.c4.xlarge',
                                          endpoint_name=endpoint_name)

        features = [6.4, 3.2, 4.5, 1.5]
        dict_result = json_predictor.predict({'inputs': features})
        print('predict result: {}'.format(dict_result))
        list_result = json_predictor.predict(features)
        print('predict result: {}'.format(list_result))

        assert dict_result == list_result
开发者ID:cheesama,项目名称:sagemaker-python-sdk,代码行数:31,代码来源:test_tf.py

示例9: test_async_fit_deploy

def test_async_fit_deploy(sagemaker_session, pytorch_full_version):
    training_job_name = ""
    # TODO: add tests against local mode when it's ready to be used
    instance_type = 'ml.p2.xlarge'

    with timeout(minutes=10):
        pytorch = _get_pytorch_estimator(sagemaker_session, pytorch_full_version, instance_type)

        pytorch.fit({'training': _upload_training_data(pytorch)}, wait=False)
        training_job_name = pytorch.latest_training_job.name

        print("Waiting to re-attach to the training job: %s" % training_job_name)
        time.sleep(20)

    if not _is_local_mode(instance_type):
        endpoint_name = 'test-pytorch-async-fit-attach-deploy-{}'.format(sagemaker_timestamp())

        with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
            print("Re-attaching now to: %s" % training_job_name)
            estimator = PyTorch.attach(training_job_name=training_job_name, sagemaker_session=sagemaker_session)
            predictor = estimator.deploy(1, instance_type, endpoint_name=endpoint_name)

            batch_size = 100
            data = numpy.random.rand(batch_size, 1, 28, 28).astype(numpy.float32)
            output = predictor.predict(data)

            assert output.shape == (batch_size, 10)
开发者ID:duasahil8,项目名称:sagemaker-python-sdk,代码行数:27,代码来源:test_pytorch_train.py

示例10: test_pca

def test_pca(sagemaker_session):
    with timeout(minutes=15):
        data_path = os.path.join(DATA_DIR, 'one_p_mnist', 'mnist.pkl.gz')
        pickle_args = {} if sys.version_info.major == 2 else {'encoding': 'latin1'}

        # Load the data into memory as numpy arrays
        with gzip.open(data_path, 'rb') as f:
            train_set, _, _ = pickle.load(f, **pickle_args)

        pca = sagemaker.amazon.pca.PCA(role='SageMakerRole', train_instance_count=1,
                                       train_instance_type='ml.m4.xlarge',
                                       num_components=48, sagemaker_session=sagemaker_session, base_job_name='test-pca')

        pca.algorithm_mode = 'randomized'
        pca.subtract_mean = True
        pca.extra_components = 5
        pca.fit(pca.record_set(train_set[0][:100]))

    endpoint_name = name_from_base('pca')
    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        pca_model = sagemaker.amazon.pca.PCAModel(model_data=pca.model_data, role='SageMakerRole',
                                                  sagemaker_session=sagemaker_session)
        predictor = pca_model.deploy(initial_instance_count=1, instance_type="ml.c4.xlarge",
                                     endpoint_name=endpoint_name)

        result = predictor.predict(train_set[0][:5])

        assert len(result) == 5
        for record in result:
            assert record.label["projection"] is not None
开发者ID:duasahil8,项目名称:sagemaker-python-sdk,代码行数:30,代码来源:test_pca.py

示例11: test_linear_learner_multiclass

def test_linear_learner_multiclass(sagemaker_session):
    with timeout(minutes=15):
        data_path = os.path.join(DATA_DIR, 'one_p_mnist', 'mnist.pkl.gz')
        pickle_args = {} if sys.version_info.major == 2 else {'encoding': 'latin1'}

        # Load the data into memory as numpy arrays
        with gzip.open(data_path, 'rb') as f:
            train_set, _, _ = pickle.load(f, **pickle_args)

        train_set = train_set[0], train_set[1].astype(np.dtype('float32'))

        ll = LinearLearner('SageMakerRole', 1, 'ml.c4.2xlarge', base_job_name='test-linear-learner',
                           predictor_type='multiclass_classifier', num_classes=10, sagemaker_session=sagemaker_session)

        ll.epochs = 1
        ll.fit(ll.record_set(train_set[0][:200], train_set[1][:200]))

    endpoint_name = name_from_base('linear-learner')
    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):

        predictor = ll.deploy(1, 'ml.c4.xlarge', endpoint_name=endpoint_name)

        result = predictor.predict(train_set[0][0:100])
        assert len(result) == 100
        for record in result:
            assert record.label["predicted_label"] is not None
            assert record.label["score"] is not None
开发者ID:duasahil8,项目名称:sagemaker-python-sdk,代码行数:27,代码来源:test_linear_learner.py

示例12: fixture_training_job

def fixture_training_job(sagemaker_session, pytorch_full_version):
    instance_type = 'ml.c4.xlarge'
    with timeout(minutes=15):
        pytorch = _get_pytorch_estimator(sagemaker_session, pytorch_full_version, instance_type)

        pytorch.fit({'training': _upload_training_data(pytorch)})
        return pytorch.latest_training_job.name
开发者ID:duasahil8,项目名称:sagemaker-python-sdk,代码行数:7,代码来源:test_pytorch_train.py

示例13: test_ntm

def test_ntm(sagemaker_session):
    with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES):
        data_path = os.path.join(DATA_DIR, 'ntm')
        data_filename = 'nips-train_1.pbr'

        with open(os.path.join(data_path, data_filename), 'rb') as f:
            all_records = read_records(f)

        # all records must be same
        feature_num = int(all_records[0].features['values'].float32_tensor.shape[0])

        ntm = NTM(role='SageMakerRole', train_instance_count=1, train_instance_type='ml.c4.xlarge', num_topics=10,
                  sagemaker_session=sagemaker_session, base_job_name='test-ntm')

        record_set = prepare_record_set_from_local_files(data_path, ntm.data_location,
                                                         len(all_records), feature_num, sagemaker_session)
        ntm.fit(record_set, None)

    endpoint_name = name_from_base('ntm')
    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        model = NTMModel(ntm.model_data, role='SageMakerRole', sagemaker_session=sagemaker_session)
        predictor = model.deploy(1, 'ml.c4.xlarge', endpoint_name=endpoint_name)

        predict_input = np.random.rand(1, feature_num)
        result = predictor.predict(predict_input)

        assert len(result) == 1
        for record in result:
            assert record.label["topic_weights"] is not None
开发者ID:cheesama,项目名称:sagemaker-python-sdk,代码行数:29,代码来源:test_ntm.py

示例14: test_failed_tf_training

def test_failed_tf_training(sagemaker_session, tf_full_version):
    with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES):
        script_path = os.path.join(DATA_DIR, 'iris', 'failure_script.py')
        ec2_client = sagemaker_session.boto_session.client('ec2')
        subnet, security_group_id = get_or_create_subnet_and_security_group(ec2_client, VPC_NAME)
        estimator = TensorFlow(entry_point=script_path,
                               role='SageMakerRole',
                               framework_version=tf_full_version,
                               training_steps=1,
                               evaluation_steps=1,
                               hyperparameters={'input_tensor_name': 'inputs'},
                               train_instance_count=1,
                               train_instance_type='ml.c4.xlarge',
                               sagemaker_session=sagemaker_session,
                               subnets=[subnet],
                               security_group_ids=[security_group_id])

        inputs = estimator.sagemaker_session.upload_data(path=DATA_PATH, key_prefix='integ-test-data/tf-failure')

        with pytest.raises(ValueError) as e:
            estimator.fit(inputs)
        assert 'This failure is expected' in str(e.value)

        job_desc = estimator.sagemaker_session.sagemaker_client.describe_training_job(
            TrainingJobName=estimator.latest_training_job.name)
        assert [subnet] == job_desc['VpcConfig']['Subnets']
        assert [security_group_id] == job_desc['VpcConfig']['SecurityGroupIds']
开发者ID:cheesama,项目名称:sagemaker-python-sdk,代码行数:27,代码来源:test_tf.py

示例15: test_failed_training_job

def test_failed_training_job(sagemaker_session, pytorch_full_version):
    script_path = os.path.join(MNIST_DIR, 'failure_script.py')

    with timeout(minutes=15):
        pytorch = _get_pytorch_estimator(sagemaker_session, pytorch_full_version, entry_point=script_path)

        with pytest.raises(ValueError) as e:
            pytorch.fit(_upload_training_data(pytorch))
        assert 'This failure is expected' in str(e.value)
开发者ID:duasahil8,项目名称:sagemaker-python-sdk,代码行数:9,代码来源:test_pytorch_train.py


注:本文中的tests.integ.timeout.timeout函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。