本文整理汇总了Python中test_framework.util.satoshi_round函数的典型用法代码示例。如果您正苦于以下问题:Python satoshi_round函数的具体用法?Python satoshi_round怎么用?Python satoshi_round使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了satoshi_round函数的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: make_utxo
def make_utxo(node, amount, confirmed=True, scriptPubKey=CScript([1])):
"""Create a txout with a given amount and scriptPubKey
Mines coins as needed.
confirmed - txouts created will be confirmed in the blockchain;
unconfirmed otherwise.
"""
fee = 1*COIN
while node.getbalance()['bitcoin'] < satoshi_round((amount + fee)/COIN):
node.generate(100)
new_addr = node.getnewaddress()
unblinded_addr = node.validateaddress(new_addr)["unconfidential"]
txidstr = node.sendtoaddress(new_addr, satoshi_round((amount+fee)/COIN))
tx1 = node.getrawtransaction(txidstr, 1)
txid = int(txidstr, 16)
i = None
for i, txout in enumerate(tx1['vout']):
if txout['scriptPubKey']['type'] == "fee":
continue # skip fee outputs
if txout['scriptPubKey']['addresses'] == [unblinded_addr]:
break
assert i is not None
tx2 = CTransaction()
tx2.vin = [CTxIn(COutPoint(txid, i))]
tx1raw = CTransaction()
tx1raw.deserialize(BytesIO(hex_str_to_bytes(node.getrawtransaction(txidstr))))
feeout = CTxOut(CTxOutValue(tx1raw.vout[i].nValue.getAmount() - amount))
tx2.vout = [CTxOut(amount, scriptPubKey), feeout]
tx2.rehash()
signed_tx = node.signrawtransactionwithwallet(txToHex(tx2))
txid = node.sendrawtransaction(signed_tx['hex'], True)
# If requested, ensure txouts are confirmed.
if confirmed:
mempool_size = len(node.getrawmempool())
while mempool_size > 0:
node.generate(1)
new_size = len(node.getrawmempool())
# Error out if we have something stuck in the mempool, as this
# would likely be a bug.
assert(new_size < mempool_size)
mempool_size = new_size
return COutPoint(int(txid, 16), 0)
示例2: split_inputs
def split_inputs(from_node, txins, txouts, initial_split=False):
"""Generate a lot of inputs so we can generate a ton of transactions.
This function takes an input from txins, and creates and sends a transaction
which splits the value into 2 outputs which are appended to txouts.
Previously this was designed to be small inputs so they wouldn't have
a high coin age when the notion of priority still existed."""
prevtxout = txins.pop()
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(int(prevtxout["txid"], 16), prevtxout["vout"]), b""))
half_change = satoshi_round(prevtxout["amount"] / 2)
rem_change = prevtxout["amount"] - half_change - Decimal("0.00001000")
tx.vout.append(CTxOut(int(half_change * COIN), P2SH_1))
tx.vout.append(CTxOut(int(rem_change * COIN), P2SH_2))
# If this is the initial split we actually need to sign the transaction
# Otherwise we just need to insert the proper ScriptSig
if (initial_split):
completetx = from_node.signrawtransactionwithwallet(ToHex(tx))["hex"]
else:
tx.vin[0].scriptSig = SCRIPT_SIG[prevtxout["vout"]]
completetx = ToHex(tx)
txid = from_node.sendrawtransaction(completetx, True)
txouts.append({"txid": txid, "vout": 0, "amount": half_change})
txouts.append({"txid": txid, "vout": 1, "amount": rem_change})
示例3: make_utxo
def make_utxo(node, amount, confirmed=True, scriptPubKey=CScript([1])):
"""Create a txout with a given amount and scriptPubKey
Mines coins as needed.
confirmed - txouts created will be confirmed in the blockchain;
unconfirmed otherwise.
"""
fee = 1*COIN
while node.getbalance() < satoshi_round((amount + fee)/COIN):
node.generate(100)
new_addr = node.getnewaddress()
txid = node.sendtoaddress(new_addr, satoshi_round((amount+fee)/COIN))
tx1 = node.getrawtransaction(txid, 1)
txid = int(txid, 16)
i = None
for i, txout in enumerate(tx1['vout']):
if txout['scriptPubKey']['addresses'] == [new_addr]:
break
assert i is not None
tx2 = CTransaction()
tx2.vin = [CTxIn(COutPoint(txid, i))]
tx2.vout = [CTxOut(amount, scriptPubKey)]
tx2.rehash()
signed_tx = node.signrawtransactionwithwallet(txToHex(tx2))
txid = node.sendrawtransaction(signed_tx['hex'], True)
# If requested, ensure txouts are confirmed.
if confirmed:
mempool_size = len(node.getrawmempool())
while mempool_size > 0:
node.generate(1)
new_size = len(node.getrawmempool())
# Error out if we have something stuck in the mempool, as this
# would likely be a bug.
assert(new_size < mempool_size)
mempool_size = new_size
return COutPoint(int(txid, 16), 0)
示例4: chain_transaction
def chain_transaction(self, node, parent_txid, vout, value, fee, num_outputs):
send_value = satoshi_round((value - fee)/num_outputs)
inputs = [ {'txid' : parent_txid, 'vout' : vout} ]
outputs = {}
for i in range(num_outputs):
outputs[node.getnewaddress()] = send_value
rawtx = node.createrawtransaction(inputs, outputs)
signedtx = node.signrawtransactionwithwallet(rawtx)
txid = node.sendrawtransaction(signedtx['hex'])
fulltx = node.getrawtransaction(txid, 1)
assert(len(fulltx['vout']) == num_outputs) # make sure we didn't generate a change output
return (txid, send_value)
示例5: create_null_data_tx
def create_null_data_tx(self, data_size):
node = self.nodes[0]
utxos = node.listunspent()
assert(len(utxos) > 0)
utxo = utxos[0]
tx = CTransaction()
value = int(satoshi_round(utxo["amount"] - self.relayfee) * COIN)
tx.vin = [CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]))]
script = CScript([OP_RETURN, b'x' * data_size])
tx.vout = [CTxOut(value, script)]
tx_signed = node.signrawtransaction(ToHex(tx))["hex"]
return tx_signed
示例6: create_and_tx
def create_and_tx(self, count):
node = self.nodes[0]
utxos = node.listunspent()
assert(len(utxos) > 0)
utxo = utxos[0]
tx = CTransaction()
value = int(satoshi_round(
utxo["amount"] - self.relayfee) * COIN) // count
tx.vin = [CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]))]
tx.vout = []
for _ in range(count):
tx.vout.append(CTxOut(value, CScript([OP_1, OP_1, OP_AND])))
tx_signed = node.signrawtransaction(ToHex(tx))["hex"]
return tx_signed
示例7: small_txpuzzle_randfee
def small_txpuzzle_randfee(from_node, conflist, unconflist, amount, min_fee, fee_increment):
"""Create and send a transaction with a random fee.
The transaction pays to a trivial P2SH script, and assumes that its inputs
are of the same form.
The function takes a list of confirmed outputs and unconfirmed outputs
and attempts to use the confirmed list first for its inputs.
It adds the newly created outputs to the unconfirmed list.
Returns (raw transaction, fee)."""
# It's best to exponentially distribute our random fees
# because the buckets are exponentially spaced.
# Exponentially distributed from 1-128 * fee_increment
rand_fee = float(fee_increment) * (1.1892 ** random.randint(0, 28))
# Total fee ranges from min_fee to min_fee + 127*fee_increment
fee = min_fee - fee_increment + satoshi_round(rand_fee)
tx = CTransaction()
total_in = Decimal("0.00000000")
while total_in <= (amount + fee) and len(conflist) > 0:
t = conflist.pop(0)
total_in += t["amount"]
tx.vin.append(CTxIn(COutPoint(int(t["txid"], 16), t["vout"]), b""))
if total_in <= amount + fee:
while total_in <= (amount + fee) and len(unconflist) > 0:
t = unconflist.pop(0)
total_in += t["amount"]
tx.vin.append(CTxIn(COutPoint(int(t["txid"], 16), t["vout"]), b""))
if total_in <= amount + fee:
raise RuntimeError("Insufficient funds: need %d, have %d" % (amount + fee, total_in))
tx.vout.append(CTxOut(int((total_in - amount - fee) * COIN), P2SH_1))
tx.vout.append(CTxOut(int(amount * COIN), P2SH_2))
tx.vout.append(CTxOut(int(fee*COIN))) # fee
# These transactions don't need to be signed, but we still have to insert
# the ScriptSig that will satisfy the ScriptPubKey.
for inp in tx.vin:
inp.scriptSig = SCRIPT_SIG[inp.prevout.n]
txid = from_node.sendrawtransaction(ToHex(tx), True)
unconflist.append({"txid": txid, "vout": 0, "amount": total_in - amount - fee})
unconflist.append({"txid": txid, "vout": 1, "amount": amount})
return (ToHex(tx), fee)
示例8: test_disable_flag
def test_disable_flag(self):
# Create some unconfirmed inputs
new_addr = self.nodes[0].getnewaddress()
self.nodes[0].sendtoaddress(new_addr, 2) # send 2 BTC
utxos = self.nodes[0].listunspent(0, 0)
assert len(utxos) > 0
utxo = utxos[0]
tx1 = CTransaction()
value = int(satoshi_round(utxo["amount"] - self.relayfee)*COIN)
# Check that the disable flag disables relative locktime.
# If sequence locks were used, this would require 1 block for the
# input to mature.
sequence_value = SEQUENCE_LOCKTIME_DISABLE_FLAG | 1
tx1.vin = [CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]), nSequence=sequence_value)]
tx1.vout = [CTxOut(value, CScript([b'a']))]
tx1_signed = self.nodes[0].signrawtransactionwithwallet(ToHex(tx1))["hex"]
tx1_id = self.nodes[0].sendrawtransaction(tx1_signed)
tx1_id = int(tx1_id, 16)
# This transaction will enable sequence-locks, so this transaction should
# fail
tx2 = CTransaction()
tx2.nVersion = 2
sequence_value = sequence_value & 0x7fffffff
tx2.vin = [CTxIn(COutPoint(tx1_id, 0), nSequence=sequence_value)]
tx2.vout = [CTxOut(int(value - self.relayfee * COIN), CScript([b'a' * 35]))]
tx2.rehash()
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx2))
# Setting the version back down to 1 should disable the sequence lock,
# so this should be accepted.
tx2.nVersion = 1
self.nodes[0].sendrawtransaction(ToHex(tx2))
示例9: run_test
#.........这里部分代码省略.........
# Check that descendant modified fees includes fee deltas from
# prioritisetransaction
self.nodes[0].prioritisetransaction(txid=chain[-1], fee_delta=1000)
mempool = self.nodes[0].getrawmempool(True)
descendant_fees = 0
for x in reversed(chain):
descendant_fees += mempool[x]['fee']
assert_equal(mempool[x]['fees']['descendant'], descendant_fees + Decimal('0.00001'))
assert_equal(mempool[x]['descendantfees'], descendant_fees * COIN + 1000)
# Adding one more transaction on to the chain should fail.
assert_raises_rpc_error(-26, "too-long-mempool-chain", self.chain_transaction, self.nodes[0], txid, vout, value, fee, 1)
# Check that prioritising a tx before it's added to the mempool works
# First clear the mempool by mining a block.
self.nodes[0].generate(1)
sync_blocks(self.nodes)
assert_equal(len(self.nodes[0].getrawmempool()), 0)
# Prioritise a transaction that has been mined, then add it back to the
# mempool by using invalidateblock.
self.nodes[0].prioritisetransaction(txid=chain[-1], fee_delta=2000)
self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
# Keep node1's tip synced with node0
self.nodes[1].invalidateblock(self.nodes[1].getbestblockhash())
# Now check that the transaction is in the mempool, with the right modified fee
mempool = self.nodes[0].getrawmempool(True)
descendant_fees = 0
for x in reversed(chain):
descendant_fees += mempool[x]['fee']
if (x == chain[-1]):
assert_equal(mempool[x]['modifiedfee'], mempool[x]['fee']+satoshi_round(0.00002))
assert_equal(mempool[x]['fees']['modified'], mempool[x]['fee']+satoshi_round(0.00002))
assert_equal(mempool[x]['descendantfees'], descendant_fees * COIN + 2000)
assert_equal(mempool[x]['fees']['descendant'], descendant_fees+satoshi_round(0.00002))
# TODO: check that node1's mempool is as expected
# TODO: test ancestor size limits
# Now test descendant chain limits
txid = utxo[1]['txid']
value = utxo[1]['amount']
vout = utxo[1]['vout']
transaction_package = []
tx_children = []
# First create one parent tx with 10 children
(txid, sent_value) = self.chain_transaction(self.nodes[0], txid, vout, value, fee, 10)
parent_transaction = txid
for i in range(10):
transaction_package.append({'txid': txid, 'vout': i, 'amount': sent_value})
# Sign and send up to MAX_DESCENDANT transactions chained off the parent tx
for i in range(MAX_DESCENDANTS - 1):
utxo = transaction_package.pop(0)
(txid, sent_value) = self.chain_transaction(self.nodes[0], utxo['txid'], utxo['vout'], utxo['amount'], fee, 10)
if utxo['txid'] is parent_transaction:
tx_children.append(txid)
for j in range(10):
transaction_package.append({'txid': txid, 'vout': j, 'amount': sent_value})
mempool = self.nodes[0].getrawmempool(True)
assert_equal(mempool[parent_transaction]['descendantcount'], MAX_DESCENDANTS)
示例10: test_compactblock_construction
def test_compactblock_construction(self, node, test_node, version, use_witness_address):
# Generate a bunch of transactions.
node.generate(101)
num_transactions = 25
address = node.getnewaddress()
if use_witness_address:
# Want at least one segwit spend, so move all funds to
# a witness address.
address = node.addwitnessaddress(address)
value_to_send = node.getbalance()
node.sendtoaddress(address, satoshi_round(value_to_send-Decimal(0.1)))
node.generate(1)
segwit_tx_generated = False
for i in range(num_transactions):
txid = node.sendtoaddress(address, 0.1)
hex_tx = node.gettransaction(txid)["hex"]
tx = FromHex(CTransaction(), hex_tx)
if not tx.wit.is_null():
segwit_tx_generated = True
if use_witness_address:
assert(segwit_tx_generated) # check that our test is not broken
# Wait until we've seen the block announcement for the resulting tip
tip = int(node.getbestblockhash(), 16)
test_node.wait_for_block_announcement(tip)
# Make sure we will receive a fast-announce compact block
self.request_cb_announcements(test_node, node, version)
# Now mine a block, and look at the resulting compact block.
test_node.clear_block_announcement()
block_hash = int(node.generate(1)[0], 16)
# Store the raw block in our internal format.
block = FromHex(CBlock(), node.getblock("%02x" % block_hash, False))
for tx in block.vtx:
tx.calc_sha256()
block.rehash()
# Wait until the block was announced (via compact blocks)
wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock)
# Now fetch and check the compact block
header_and_shortids = None
with mininode_lock:
assert("cmpctblock" in test_node.last_message)
# Convert the on-the-wire representation to absolute indexes
header_and_shortids = HeaderAndShortIDs(test_node.last_message["cmpctblock"].header_and_shortids)
self.check_compactblock_construction_from_block(version, header_and_shortids, block_hash, block)
# Now fetch the compact block using a normal non-announce getdata
with mininode_lock:
test_node.clear_block_announcement()
inv = CInv(4, block_hash) # 4 == "CompactBlock"
test_node.send_message(msg_getdata([inv]))
wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock)
# Now fetch and check the compact block
header_and_shortids = None
with mininode_lock:
assert("cmpctblock" in test_node.last_message)
# Convert the on-the-wire representation to absolute indexes
header_and_shortids = HeaderAndShortIDs(test_node.last_message["cmpctblock"].header_and_shortids)
self.check_compactblock_construction_from_block(version, header_and_shortids, block_hash, block)