本文整理汇总了Python中tensorflow.python.training.distribution_strategy_context.get_tower_context函数的典型用法代码示例。如果您正苦于以下问题:Python get_tower_context函数的具体用法?Python get_tower_context怎么用?Python get_tower_context使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了get_tower_context函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _assign_func
def _assign_func(self, *args, **kwargs):
f = kwargs.pop("f")
if distribution_strategy_context.get_cross_tower_context():
update_device = distribute_lib.get_update_device()
if update_device is not None:
# We are calling an assign function in an update context.
return f(self._v, *args, **kwargs)
# We are calling an assign function in cross tower context, wrap it in an
# update call.
return distribution_strategy_context.get_distribution_strategy().update(
self, f, *args, **kwargs)
else:
assert distribution_strategy_context.get_tower_context()
# We are calling an assign function in tower context.
# We reduce the value we want to assign/add/sub. More details about how we
# handle the different use cases can be found in the _reduce method.
# We call the function with the reduced value.
if self._aggregation == vs.VariableAggregation.NONE:
raise ValueError("You must specify an aggregation method to update a "
"a variable in Tower Context.")
def merge_fn(strategy, value, *other_args, **other_kwargs):
return strategy.update(
self, f,
strategy.reduce(
aggregation=self._aggregation, value=value, destinations=self),
*other_args, **other_kwargs)
return distribution_strategy_context.get_tower_context().merge_call(
merge_fn, *args, **kwargs)
示例2: model_fn
def model_fn():
with ops.name_scope(None, "foo"):
a = constant_op.constant(1.0, name="a")
distribution_strategy_context.get_tower_context().merge_call(
lambda _: _)
b = constant_op.constant(2.0, name="b")
return a, b
示例3: set_non_tensor_output
def set_non_tensor_output(self, name, output):
"""Set `output` with `name` to be captured as a non tensor output."""
if distribution_strategy_context.get_cross_tower_context():
self._non_tensor_outputs[name] = output
else:
def merge_fn(distribution, value):
# NOTE(priyag): For non tensor outputs, we simply return all the values
# in a list as aggregation doesn't make sense on non tensors.
self._non_tensor_outputs[name] = distribution.unwrap(value)
distribution_strategy_context.get_tower_context().merge_call(
merge_fn, output)
示例4: model_fn
def model_fn(device_id):
assert isinstance(device_id, int)
def thread_creator_fn(next_creator, *args, **kwargs):
return next_creator(*args, **kwargs) + ":thread_" + str(device_id)
with variable_scope.variable_creator_scope(thread_creator_fn):
# Create a variable in this scope.
v = variable_scope.variable(1.0)
# This will pause the current thread, and execute the other thread.
distribution_strategy_context.get_tower_context().merge_call(
lambda _: _)
return v
示例5: _assert_in_default_state
def _assert_in_default_state(t):
t.assertIs(distribution_strategy_context._get_default_tower_context(),
distribution_strategy_context.get_tower_context())
t.assertIs(None, distribution_strategy_context.get_cross_tower_context())
t.assertIs(distribution_strategy_context._get_default_distribution_strategy(),
distribution_strategy_context.get_distribution_strategy())
t.assertFalse(distribution_strategy_context.has_distribution_strategy())
示例6: skip_summary
def skip_summary():
# If using multiple towers in distributed strategy, skip summaries on all
# towers except the first one (tower_id=0).
# TODO(priyag): Add a new optional argument that will provide multiple
# alternatives to override default behavior. (e.g. run on last tower,
# compute sum or mean across towers).
tower_context = distribution_strategy_context.get_tower_context()
return tower_context and tower_context.tower_id > 0
示例7: increment_var
def increment_var(v, amount=1):
"""`v += amount`, distributed-aware version."""
def update(vu):
return vu.assign_add(amount, read_value=False)
def merge_fn(dist, vm):
return dist.update(vm, update)
tower_context = distribution_strategy_context.get_tower_context()
return tower_context.merge_call(merge_fn, v)
示例8: set_last_step_output
def set_last_step_output(self, name, output,
aggregation=variables_lib.VariableAggregation.NONE):
"""Set `output` with `name` to be outputted from the last step.
Args:
name: String, name to identify the output. Doesn't need to match tensor
name.
output: The tensors that should be outputted with `name`. See below for
actual types supported.
aggregation: Aggregation method to use to aggregate outputs from multiple
towers. Required if `set_last_step_output` is called in a tower context.
Optional in cross_tower_context.
When present, the outputs from all the towers are aggregated using the
current distribution strategy's `reduce` method. Hence, the type of
`output` must be what's supported by the corresponding `reduce` method.
For e.g. if using MirroredStrategy and aggregation is set, output
must be a `PerDevice` value.
The aggregation method is also recorded in a dictionary
`_last_step_outputs_aggregations` for later interpreting of the
outputs as already reduced or not.
"""
if distribution_strategy_context.get_cross_tower_context():
self._last_step_outputs_aggregations[name] = aggregation
if aggregation is variables_lib.VariableAggregation.NONE:
self._last_step_outputs[name] = output
else:
distribution = distribution_strategy_context.get_distribution_strategy()
self._last_step_outputs[name] = distribution.reduce(
aggregation, output, destinations="/device:CPU:0")
else:
assert aggregation is not variables_lib.VariableAggregation.NONE
def merge_fn(distribution, value):
self._last_step_outputs[name] = distribution.reduce(
aggregation, value, destinations="/device:CPU:0")
# Setting this inside the `merge_fn` because all towers share the same
# context object, so it's more robust to set it only once (even if all
# the towers are trying to set the same value).
self._last_step_outputs_aggregations[name] = aggregation
distribution_strategy_context.get_tower_context().merge_call(
merge_fn, output)
示例9: merge_fn
def merge_fn(dist, s):
self.assertIs(
distribution_strategy_context._get_default_distribution_strategy(),
dist)
self.assertIs(None, distribution_strategy_context.get_tower_context())
self.assertIs(dist,
distribution_strategy_context.get_cross_tower_context())
self.assertIs(dist,
distribution_strategy_context.get_distribution_strategy())
self.assertFalse(
distribution_strategy_context.has_distribution_strategy())
return "foo_" + s
示例10: increment_var
def increment_var(v, amount=1):
"""`v += amount`, distributed-aware version."""
def update(vu):
if isinstance(vu, resource_variable_ops.ResourceVariable):
return vu.assign_add(amount, read_value=False)
else:
return state_ops.assign_add(vu, amount)
def merge_fn(dist, vm):
return dist.group(dist.update(vm, update))
tower_context = distribution_strategy_context.get_tower_context()
return tower_context.merge_call(merge_fn, v)
示例11: run_fn
def run_fn():
tower_context = distribution_strategy_context.get_tower_context()
self.assertTrue(tower_context is not None)
self.assertIs(None,
distribution_strategy_context.get_cross_tower_context())
self.assertTrue(distribution_strategy_context.has_distribution_strategy())
self.assertIs(dist,
distribution_strategy_context.get_distribution_strategy())
self.assertEqual("foo", tower_context.merge_call(None, test_arg="foo"))
expected_value = _get_test_variable(
"bar", variable_scope.VariableSynchronization.AUTO,
variable_scope.VariableAggregation.NONE)
self.assertDictEqual(expected_value,
variable_scope.variable(1.0, name="bar"))
示例12: testScope
def testScope(self):
_assert_in_default_state(self)
dist = _TestStrategy()
with dist.scope():
self.assertIs(None, distribution_strategy_context.get_tower_context())
self.assertIs(dist,
distribution_strategy_context.get_cross_tower_context())
self.assertTrue(distribution_strategy_context.has_distribution_strategy())
self.assertIs(dist,
distribution_strategy_context.get_distribution_strategy())
expected_value = _get_test_variable(
"baz", variable_scope.VariableSynchronization.AUTO,
variable_scope.VariableAggregation.NONE)
self.assertDictEqual(expected_value,
variable_scope.variable(1.0, name="baz"))
_assert_in_default_state(self)
示例13: get
def get(self, device=None):
"""Returns the value for the current device or raises a ValueError."""
if device is None:
tower_context = distribution_strategy_context.get_tower_context()
if tower_context:
device = tower_context.device
else:
device = distribute_lib.get_update_device()
if device is None:
return self._get_cross_tower()
device = device_util.canonicalize(device)
try:
return self._index[device]
except KeyError as e:
six.raise_from(
ValueError("Device %s not found in %s (current device %s)" %
(device, self._index.keys(), device_util.current())), e)
示例14: testMergeCall
def testMergeCall(self):
_assert_in_default_state(self)
def merge_fn(dist, s):
self.assertIs(
distribution_strategy_context._get_default_distribution_strategy(),
dist)
self.assertIs(None, distribution_strategy_context.get_tower_context())
self.assertIs(dist,
distribution_strategy_context.get_cross_tower_context())
self.assertIs(dist,
distribution_strategy_context.get_distribution_strategy())
self.assertFalse(
distribution_strategy_context.has_distribution_strategy())
return "foo_" + s
tower_ctx = distribution_strategy_context.get_tower_context()
self.assertIs(distribution_strategy_context._get_default_tower_context(),
tower_ctx)
self.assertEqual("foo_bar", tower_ctx.merge_call(merge_fn, "bar"))
_assert_in_default_state(self)
示例15: decorated
def decorated(metric_obj, *args):
"""Decorated function with merge_call."""
tower_context = distribution_strategy_context.get_tower_context()
if tower_context is None: # if in cross tower context already
result_t = result_fn(*args)
else:
# TODO(psv): Test distribution of metrics using different distribution
# strategies.
# Creating a wrapper for merge_fn. merge_call invokes the given merge_fn
# with distribution object as the first parameter. We create a wrapper
# here so that the result function need not have that parameter.
def merge_fn_wrapper(distribution, merge_fn, *args):
# We will get `PerDevice` merge function. Taking the first one as all
# are identical copies of the function that we had passed below.
return distribution.unwrap(merge_fn)[0](*args)
# Wrapping result in merge_call. merge_call is used when we want to leave
# tower mode and compute a value in cross tower mode.
result_t = tower_context.merge_call(merge_fn_wrapper, result_fn, *args)
check_is_tensor_or_operation(result_t,
'Metric {0}\'s result'.format(metric_obj.name))
return result_t