本文整理汇总了Python中tensorflow.python.profiler.model_analyzer.profile函数的典型用法代码示例。如果您正苦于以下问题:Python profile函数的具体用法?Python profile怎么用?Python profile使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了profile函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testSelectEverything
def testSelectEverything(self):
ops.reset_default_graph()
outfile = os.path.join(test.get_temp_dir(), 'dump')
opts = (builder(builder.trainable_variables_parameter())
.with_file_output(outfile)
.with_accounted_types(['.*'])
.select(['params', 'float_ops', 'occurrence', 'device', 'op_types',
'input_shapes']).build())
rewriter_config = rewriter_config_pb2.RewriterConfig(
disable_model_pruning=True)
graph_options = config_pb2.GraphOptions(rewrite_options=rewriter_config)
config = config_pb2.ConfigProto(graph_options=graph_options)
with session.Session(config=config) as sess, ops.device('/device:CPU:0'):
x = lib.BuildSmallModel()
sess.run(variables.global_variables_initializer())
run_meta = config_pb2.RunMetadata()
_ = sess.run(x,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=run_meta)
model_analyzer.profile(
sess.graph, run_meta, options=opts)
示例2: testTrackPersistentBytes
def testTrackPersistentBytes(self):
ops.reset_default_graph()
a = array_ops.constant(np.ones((100, 100)))
b = array_ops.constant(np.ones((100, 100)))
c = a * b
with session.Session() as sess:
run_options = config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE)
run_metadata = config_pb2.RunMetadata()
sess.run(c, options=run_options, run_metadata=run_metadata)
options = option_builder.ProfileOptionBuilder.time_and_memory()
options['min_bytes'] = 0
options['select'] = ('bytes', 'peak_bytes', 'output_bytes',
'residual_bytes')
ret = model_analyzer.profile(
sess.graph, run_meta=run_metadata, cmd='scope', options=options)
run_metadata = config_pb2.RunMetadata()
sess.run(c, options=run_options, run_metadata=run_metadata)
ret2 = model_analyzer.profile(
sess.graph, run_meta=run_metadata, cmd='scope', options=options)
n = lib.SearchTFProfNode(ret, 'mul')
n2 = lib.SearchTFProfNode(ret2, 'mul')
self.assertGreater(n.peak_bytes, 0)
self.assertGreater(n.output_bytes, 0)
self.assertGreater(n.residual_bytes, 0)
self.assertEqual(n.peak_bytes, n2.peak_bytes)
self.assertEqual(n.output_bytes, n2.output_bytes)
self.assertEqual(n.residual_bytes, n2.residual_bytes)
示例3: testSelectEverthingDetail
def testSelectEverthingDetail(self):
ops.reset_default_graph()
dev = '/gpu:0' if test.is_gpu_available() else '/cpu:0'
outfile = os.path.join(test.get_temp_dir(), 'dump')
opts = (builder(builder.trainable_variables_parameter())
.with_file_output(outfile)
.with_accounted_types(['.*'])
.select(['micros', 'bytes', 'params', 'float_ops', 'occurrence',
'device', 'op_types', 'input_shapes']).build())
config = config_pb2.ConfigProto()
with session.Session(config=config) as sess, ops.device(dev):
x = lib.BuildSmallModel()
sess.run(variables.global_variables_initializer())
run_meta = config_pb2.RunMetadata()
_ = sess.run(x,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=run_meta)
model_analyzer.profile(
sess.graph, run_meta, options=opts)
with gfile.Open(outfile, 'r') as f:
# pylint: disable=line-too-long
outputs = f.read().split('\n')
self.assertEqual(outputs[0],
'node name | # parameters | # float_ops | requested bytes | total execution time | accelerator execution time | cpu execution time | assigned devices | op types | op count (run|defined) | input shapes')
for o in outputs[1:]:
if o.find('Conv2D ') > 0:
metrics = o[o.find('(') +1: o.find(')')].split(',')
# Make sure time is profiled.
gap = 1 if test.is_gpu_available() else 2
for i in range(3, 6, gap):
mat = re.search('(.*)[um]s/(.*)[um]s', metrics[i])
self.assertGreater(float(mat.group(1)), 0.0)
self.assertGreater(float(mat.group(2)), 0.0)
# Make sure device is profiled.
if test.is_gpu_available():
self.assertTrue(metrics[6].find('gpu') > 0)
self.assertFalse(metrics[6].find('cpu') > 0)
else:
self.assertFalse(metrics[6].find('gpu') > 0)
self.assertTrue(metrics[6].find('cpu') > 0)
# Make sure float_ops is profiled.
mat = re.search('(.*)k/(.*)k flops', metrics[1].strip())
self.assertGreater(float(mat.group(1)), 0.0)
self.assertGreater(float(mat.group(2)), 0.0)
# Make sure op_count is profiled.
self.assertEqual(metrics[8].strip(), '1/1|1/1')
# Make sure input_shapes is profiled.
self.assertEqual(metrics[9].strip(), '0:2x6x6x3|1:3x3x3x6')
if o.find('DW (3x3x3x6') > 0:
metrics = o[o.find('(') +1: o.find(')')].split(',')
mat = re.search('(.*)/(.*) params', metrics[1].strip())
self.assertGreater(float(mat.group(1)), 0.0)
self.assertGreater(float(mat.group(2)), 0.0)
示例4: testSelectEverything
def testSelectEverything(self):
ops.reset_default_graph()
outfile = os.path.join(test.get_temp_dir(), 'dump')
opts = (builder(builder.trainable_variables_parameter())
.with_file_output(outfile)
.with_accounted_types(['.*'])
.select(['params', 'float_ops', 'occurrence', 'device', 'op_types',
'input_shapes']).build())
rewriter_config = rewriter_config_pb2.RewriterConfig(
disable_model_pruning=True)
graph_options = config_pb2.GraphOptions(rewrite_options=rewriter_config)
config = config_pb2.ConfigProto(graph_options=graph_options)
with session.Session(config=config) as sess, ops.device('/cpu:0'):
x = lib.BuildSmallModel()
sess.run(variables.global_variables_initializer())
run_meta = config_pb2.RunMetadata()
_ = sess.run(x,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=run_meta)
model_analyzer.profile(
sess.graph, run_meta, options=opts)
with gfile.Open(outfile, 'r') as f:
# pylint: disable=line-too-long
self.assertEqual(
'node name | # parameters | # float_ops | assigned devices | op types | op count (run|defined) | input shapes\n_TFProfRoot (--/451 params, --/10.44k flops, _kTFScopeParent, --/7|--/35, )\n Conv2D (0/0 params, 5.83k/5.83k flops, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|Conv2D, 1/1|1/1, 0:2x6x6x3|1:3x3x3x6)\n Conv2D_1 (0/0 params, 4.61k/4.61k flops, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|Conv2D, 1/1|1/1, 0:2x3x3x6|1:2x2x6x12)\n DW (3x3x3x6, 162/162 params, 0/0 flops, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|VariableV2|_trainable_variables, 1/2|1/10, )\n DW/Assign (0/0 params, 0/0 flops, Assign, 0/0|1/1, 0:3x3x3x6|1:3x3x3x6)\n DW/Initializer (0/0 params, 0/0 flops, _kTFScopeParent, 0/0|1/7, )\n DW/Initializer/random_normal (0/0 params, 0/0 flops, Add, 0/0|1/6, 0:3x3x3x6|1:1)\n DW/Initializer/random_normal/RandomStandardNormal (0/0 params, 0/0 flops, RandomStandardNormal, 0/0|1/1, 0:4)\n DW/Initializer/random_normal/mean (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n DW/Initializer/random_normal/mul (0/0 params, 0/0 flops, Mul, 0/0|1/1, 0:3x3x3x6|1:1)\n DW/Initializer/random_normal/shape (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n DW/Initializer/random_normal/stddev (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n DW/read (0/0 params, 0/0 flops, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|Identity, 1/1|1/1, 0:3x3x3x6)\n DW2 (2x2x6x12, 288/288 params, 0/0 flops, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|VariableV2|_trainable_variables, 1/2|1/10, )\n DW2/Assign (0/0 params, 0/0 flops, Assign, 0/0|1/1, 0:2x2x6x12|1:2x2x6x12)\n DW2/Initializer (0/0 params, 0/0 flops, _kTFScopeParent, 0/0|1/7, )\n DW2/Initializer/random_normal (0/0 params, 0/0 flops, Add, 0/0|1/6, 0:2x2x6x12|1:1)\n DW2/Initializer/random_normal/RandomStandardNormal (0/0 params, 0/0 flops, RandomStandardNormal, 0/0|1/1, 0:4)\n DW2/Initializer/random_normal/mean (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n DW2/Initializer/random_normal/mul (0/0 params, 0/0 flops, Mul, 0/0|1/1, 0:2x2x6x12|1:1)\n DW2/Initializer/random_normal/shape (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n DW2/Initializer/random_normal/stddev (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n DW2/read (0/0 params, 0/0 flops, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|Identity, 1/1|1/1, 0:2x2x6x12)\n ScalarW (1, 1/1 params, 0/0 flops, VariableV2|_trainable_variables, 0/0|1/10, )\n ScalarW/Assign (0/0 params, 0/0 flops, Assign, 0/0|1/1, 0:1|1:1)\n ScalarW/Initializer (0/0 params, 0/0 flops, _kTFScopeParent, 0/0|1/7, )\n ScalarW/Initializer/random_normal (0/0 params, 0/0 flops, Add, 0/0|1/6, 0:1|1:1)\n ScalarW/Initializer/random_normal/RandomStandardNormal (0/0 params, 0/0 flops, RandomStandardNormal, 0/0|1/1, 0:0)\n ScalarW/Initializer/random_normal/mean (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n ScalarW/Initializer/random_normal/mul (0/0 params, 0/0 flops, Mul, 0/0|1/1, 0:1|1:1)\n ScalarW/Initializer/random_normal/shape (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n ScalarW/Initializer/random_normal/stddev (0/0 params, 0/0 flops, Const, 0/0|1/1, )\n ScalarW/read (0/0 params, 0/0 flops, Identity, 0/0|1/1, 0:1)\n init (0/0 params, 0/0 flops, NoOp, 0/0|1/1, 0:1|1:3x3x3x6|2:2x2x6x12)\n zeros (0/0 params, 0/0 flops, /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/cpu:0|Const, 1/1|1/1, )\n',
f.read())
示例5: testSimpleCodeView
def testSimpleCodeView(self):
ops.reset_default_graph()
outfile = os.path.join(test.get_temp_dir(), 'dump')
# TODO(xpan): Test 'micros'. Since the execution time changes each run,
# it's a bit difficult to test it now.
opts = (builder(builder.trainable_variables_parameter())
.with_file_output(outfile)
.with_accounted_types(['.*'])
.with_node_names(show_name_regexes=['.*model_analyzer_testlib.*'])
.account_displayed_op_only(False)
.select(['bytes', 'params', 'float_ops', 'num_hidden_ops', 'device',
'input_shapes']).build())
with session.Session() as sess:
x = lib.BuildSmallModel()
sess.run(variables.global_variables_initializer())
run_meta = config_pb2.RunMetadata()
_ = sess.run(x,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=run_meta)
model_analyzer.profile(
sess.graph, run_meta, cmd='code', options=opts)
with gfile.Open(outfile, 'r') as f:
# pylint: disable=line-too-long
self.assertEqual(
'node name | output bytes | # parameters | # float_ops | assigned devices | input',
f.read()[0:80])
示例6: _profiled_run
def _profiled_run(self,
fetches,
feed_dict=None,
options=None,
run_metadata=None):
"""Overwrites the session.run()."""
# pylint: disable=protected-access
# Count the session steps.
self.profile_context._new_step()
# Fast path if no need for profiling.
to_profiles = self.profile_context._profile_candidates()
to_dumps = self.profile_context._dump_candidates()
if (not to_profiles and not to_dumps and
not self.profile_context._is_capture_enforced()):
return self._profiler_run_internal(
fetches, feed_dict, options, run_metadata)
# Enable tracing, perform auto profiling or auto dump.
if not run_metadata:
run_metadata = config_pb2.RunMetadata()
if not options:
options = config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE)
old_trace_level = options.trace_level
else:
old_trace_level = options.trace_level
options.trace_level = config_pb2.RunOptions.FULL_TRACE
ret = self._profiler_run_internal(fetches, feed_dict, options, run_metadata)
if self.profile_context._capture_next_step:
self.profile_context._add_run_meta(run_metadata)
for to_dump in to_dumps:
outdir, _ = to_dump
if not gfile.Exists(outdir):
gfile.MakeDirs(outdir)
with gfile.Open(os.path.join(outdir, 'graph.pbtxt'), 'w') as f:
f.write('%s' % self.graph.as_graph_def(add_shapes=True))
with gfile.Open(os.path.join(outdir, 'run_metadata'), 'w') as f:
f.write(run_metadata.SerializeToString())
tfprof_logger.write_op_log(
self.graph, outdir, run_meta=run_metadata, add_trace=True)
for to_prof in to_profiles:
cmd, opts, _ = to_prof
model_analyzer.profile(
self.graph, run_meta=run_metadata, cmd=cmd, options=opts)
# Restore to default.
options.trace_level = old_trace_level
return ret
示例7: testComplexCodeView
def testComplexCodeView(self):
ops.reset_default_graph()
outfile = os.path.join(test.get_temp_dir(), 'dump')
opts = (builder(builder.trainable_variables_parameter())
.with_file_output(outfile)
.with_accounted_types(['.*'])
.with_node_names(show_name_regexes=
['.*model_analyzer_testlib.py.*'])
.account_displayed_op_only(False)
.select(['params', 'float_ops']).build())
with session.Session() as sess:
x = lib.BuildFullModel()
sess.run(variables.global_variables_initializer())
run_meta = config_pb2.RunMetadata()
_ = sess.run(x,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=run_meta)
tfprof_node = model_analyzer.profile(
sess.graph, run_meta, cmd='code', options=opts)
# pylint: disable=line-too-long
with gfile.Open(outfile, 'r') as f:
lines = f.read().split('\n')
result = '\n'.join([l[:min(len(l), 80)] for l in lines])
self.assertEqual('node name | # parameters | # float_ops\n_TFProfRoot (--/2.84k params, --/91.04k flops)\n model_analyzer_testlib.py:58:BuildFullModel:seq.append(array_... (0/1.80k para\n model_analyzer_testlib.py:35:BuildSmallModel:image = array_ops... (0/0 param\n model_analyzer_testlib.py:39:BuildSmallModel:initializer=init_... (0/4 param\n model_analyzer_testlib.py:43:BuildSmallModel:initializer=init_... (0/648 par\n model_analyzer_testlib.py:44:BuildSmallModel:x = nn_ops.conv2d... (0/0 param\n model_analyzer_testlib.py:48:BuildSmallModel:initializer=init_... (0/1.15k p\n model_analyzer_testlib.py:49:BuildSmallModel:x = nn_ops.conv2d... (0/0 param\n model_analyzer_testlib.py:58:BuildFullModel:seq.append(array_... (gradient) (0\n model_analyzer_testlib.py:44:BuildSmallModel:x = nn_ops.conv2d... (gradient)\n model_analyzer_testlib.py:49:BuildSmallModel:x = nn_ops.conv2d... (gradient)\n model_analyzer_testlib.py:62:BuildFullModel:cell, array_ops.c... (0/1.04k para\n model_analyzer_testlib.py:62:BuildFullModel:cell, array_ops.c... (gradient) (0\n model_analyzer_testlib.py:64:BuildFullModel:target = array_op... (0/0 params, \n model_analyzer_testlib.py:65:BuildFullModel:loss = nn_ops.l2_... (0/0 params, \n model_analyzer_testlib.py:65:BuildFullModel:loss = nn_ops.l2_... (gradient) (0\n model_analyzer_testlib.py:67:BuildFullModel:return sgd_op.min... (0/0 params, \n',
result)
self.assertLess(0, tfprof_node.total_exec_micros)
self.assertEqual(2844, tfprof_node.total_parameters)
self.assertEqual(91040, tfprof_node.total_float_ops)
self.assertEqual(8, len(tfprof_node.children))
self.assertEqual('_TFProfRoot', tfprof_node.name)
self.assertEqual(
'model_analyzer_testlib.py:58:BuildFullModel:seq.append(array_...',
tfprof_node.children[0].name)
self.assertEqual(
'model_analyzer_testlib.py:58:BuildFullModel:seq.append(array_... (gradient)',
tfprof_node.children[1].name)
self.assertEqual(
'model_analyzer_testlib.py:62:BuildFullModel:cell, array_ops.c...',
tfprof_node.children[2].name)
self.assertEqual(
'model_analyzer_testlib.py:62:BuildFullModel:cell, array_ops.c... (gradient)',
tfprof_node.children[3].name)
self.assertEqual(
'model_analyzer_testlib.py:64:BuildFullModel:target = array_op...',
tfprof_node.children[4].name)
self.assertEqual(
'model_analyzer_testlib.py:65:BuildFullModel:loss = nn_ops.l2_...',
tfprof_node.children[5].name)
self.assertEqual(
'model_analyzer_testlib.py:65:BuildFullModel:loss = nn_ops.l2_... (gradient)',
tfprof_node.children[6].name)
self.assertEqual(
'model_analyzer_testlib.py:67:BuildFullModel:return sgd_op.min...',
tfprof_node.children[7].name)
示例8: _run_model
def _run_model():
x = random_ops.random_normal(shape=[1, SIZE])
w = random_ops.random_normal(shape=[SIZE, 2 * SIZE])
y = math_ops.matmul(x, w)
config = config_pb2.ConfigProto()
config.graph_options.rewrite_options.arithmetic_optimization = (
rewriter_config_pb2.RewriterConfig.OFF)
with session.Session(config=config) as sess:
run_metadata = config_pb2.RunMetadata()
opts = builder.time_and_memory()
opts['min_micros'] = 0
opts['min_bytes'] = 0
opts['order_by'] = 'name'
opts['output'] = 'none'
_ = sess.run(y,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=run_metadata)
tfprof_node = model_analyzer.profile(
sess.graph,
run_meta=run_metadata,
options=opts)
return tfprof_node, run_metadata
示例9: testCodeViewLeafGraphNode
def testCodeViewLeafGraphNode(self):
ops.reset_default_graph()
opts = model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS.copy()
opts['account_type_regexes'] = ['.*']
opts['account_displayed_op_only'] = False
opts['select'] = [
'bytes', 'params', 'float_ops', 'device'
]
opts['output'] = 'none'
with session.Session() as sess:
x = lib.BuildSmallModel()
sess.run(variables.global_variables_initializer())
run_meta = config_pb2.RunMetadata()
_ = sess.run(x,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=run_meta)
tfprof_node = model_analyzer.profile(
sess.graph, run_meta, cmd='code', options=opts)
leaf = tfprof_node
while leaf.children:
self.assertEqual(0, len(leaf.graph_nodes))
leaf = leaf.children[0]
self.assertEqual(1, len(leaf.graph_nodes))
示例10: testTimeline
def testTimeline(self):
ops.reset_default_graph()
outfile = os.path.join(test.get_temp_dir(), 'timeline')
opts = (builder(builder.trainable_variables_parameter())
.with_max_depth(100000)
.with_step(0)
.with_timeline_output(outfile)
.with_accounted_types(['.*']).build())
with session.Session() as sess:
x = lib.BuildFullModel()
sess.run(variables.global_variables_initializer())
run_meta = config_pb2.RunMetadata()
_ = sess.run(
x,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=run_meta)
_ = model_analyzer.profile(
sess.graph, run_meta, cmd='graph', options=opts)
with gfile.Open(outfile, 'r') as f:
# Test that a json file is created.
# TODO(xpan): tfprof Timeline isn't quite correct on Windows.
# Investigate why.
if os.name != 'nt':
self.assertLess(1000, len(f.read()))
else:
self.assertLess(1, len(f.read()))
示例11: testTimeline
def testTimeline(self):
ops.reset_default_graph()
opts = model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS.copy()
outfile = os.path.join(test.get_temp_dir(), 'timeline')
opts['output'] = 'timeline:outfile=' + outfile
opts['account_type_regexes'] = ['.*']
opts['max_depth'] = 100000
opts['step'] = 0
with session.Session() as sess:
x = lib.BuildFullModel()
sess.run(variables.global_variables_initializer())
run_meta = config_pb2.RunMetadata()
_ = sess.run(
x,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=run_meta)
_ = model_analyzer.profile(
sess.graph, run_meta, cmd='graph', options=opts)
with gfile.Open(outfile, 'r') as f:
# Test that a json file is created.
# TODO(xpan): tfprof Timeline isn't quite correct on Windows.
# Investigate why.
if os.name != 'nt':
self.assertLess(1000, len(f.read()))
else:
self.assertLess(1, len(f.read()))
示例12: testCodeViewLeafGraphNode
def testCodeViewLeafGraphNode(self):
ops.reset_default_graph()
opts = (builder(builder.trainable_variables_parameter())
.with_empty_output()
.with_accounted_types(['.*'])
.account_displayed_op_only(False)
.select(['bytes', 'params', 'float_ops', 'device']).build())
with session.Session() as sess:
x = lib.BuildSmallModel()
sess.run(variables.global_variables_initializer())
run_meta = config_pb2.RunMetadata()
_ = sess.run(x,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=run_meta)
tfprof_node = model_analyzer.profile(
sess.graph, run_meta, cmd='code', options=opts)
leaf = tfprof_node
while leaf.children:
self.assertEqual(0, len(leaf.graph_nodes))
leaf = leaf.children[0]
self.assertEqual(1, len(leaf.graph_nodes))
示例13: testDumpToFile
def testDumpToFile(self):
ops.reset_default_graph()
opts = model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS.copy()
outfile = os.path.join(test.get_temp_dir(), 'dump')
opts['output'] = 'file:outfile=' + outfile
with session.Session() as sess:
_ = lib.BuildSmallModel()
model_analyzer.profile(sess.graph, options=opts)
with gfile.Open(outfile, 'r') as f:
self.assertEqual(u'node name | # parameters\n'
'_TFProfRoot (--/451 params)\n'
' DW (3x3x3x6, 162/162 params)\n'
' DW2 (2x2x6x12, 288/288 params)\n'
' ScalarW (1, 1/1 params)\n',
f.read())
示例14: testDumpToFile
def testDumpToFile(self):
ops.reset_default_graph()
outfile = os.path.join(test.get_temp_dir(), 'dump')
opts = builder(builder.trainable_variables_parameter()
).with_file_output(outfile).build()
with session.Session() as sess:
_ = lib.BuildSmallModel()
model_analyzer.profile(sess.graph, options=opts)
with gfile.Open(outfile, 'r') as f:
self.assertEqual(u'node name | # parameters\n'
'_TFProfRoot (--/451 params)\n'
' DW (3x3x3x6, 162/162 params)\n'
' DW2 (2x2x6x12, 288/288 params)\n'
' ScalarW (1, 1/1 params)\n',
f.read())
示例15: testOpView
def testOpView(self):
ops.reset_default_graph()
outfile = os.path.join(test.get_temp_dir(), 'dump')
opts = (builder(builder.trainable_variables_parameter())
.with_file_output(outfile)
.with_accounted_types(['.*'])
.with_min_occurrence(10)
.order_by('occurrence')
.select(['params', 'micros', 'bytes',
'peak_bytes', 'residual_bytes',
'output_bytes', 'occurrence', 'input_shapes']).build())
with session.Session() as sess:
x = lib.BuildFullModel()
sess.run(variables.global_variables_initializer())
run_meta = config_pb2.RunMetadata()
_ = sess.run(x,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=run_meta)
tfprof_node = model_analyzer.profile(
sess.graph, run_meta, cmd='op', options=opts)
with gfile.Open(outfile, 'r') as f:
# pylint: disable=line-too-long
self.assertEqual(
'nodename|requestedbytes|peakbytes|residualbytes|outputbytes|totalexecutiontime|acceleratorexecutiontime|cpuexecutiontime|#parameters|opoccurrence(run|defined)|inputshapes',
lib.CheckAndRemoveDoc(f.read()).replace('\t',
'').replace(' ', '')[0:170])
# pylint: enable=line-too-long
total_children = 0
last_occurrence = 1e32
input_shapes = 0
last_total_micros = tfprof_node.total_exec_micros
last_micros = tfprof_node.exec_micros
while tfprof_node.children:
for gnode in tfprof_node.graph_nodes:
input_shapes += len(gnode.input_shapes)
self.assertEqual(len(tfprof_node.children), 1)
tfprof_node = tfprof_node.children[0]
self.assertEqual(
last_total_micros, tfprof_node.total_exec_micros + last_micros)
last_total_micros = tfprof_node.total_exec_micros
last_micros = tfprof_node.exec_micros
total_children += 1
self.assertLessEqual(len(tfprof_node.graph_nodes), last_occurrence)
last_occurrence = len(tfprof_node.graph_nodes)
self.assertGreater(input_shapes, 0)