当前位置: 首页>>代码示例>>Python>>正文


Python tf_logging.warn函数代码示例

本文整理汇总了Python中tensorflow.python.platform.tf_logging.warn函数的典型用法代码示例。如果您正苦于以下问题:Python warn函数的具体用法?Python warn怎么用?Python warn使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了warn函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _testMoments

  def _testMoments(self, dt):
    try:
      from scipy import stats  # pylint: disable=g-import-not-at-top
    except ImportError as e:
      tf_logging.warn("Cannot test moments: %s" % e)
      return

    # The moments test is a z-value test.  This is the largest z-value
    # we want to tolerate. Since the z-test approximates a unit normal
    # distribution, it should almost definitely never exceed 6.
    z_limit = 6.0

    for stride in 0, 1, 4, 17:
      alphas = [0.2, 1.0, 3.0]
      if dt == dtypes.float64:
        alphas = [0.01] + alphas
      for alpha in alphas:
        for scale in 9, 17:
          # Gamma moments only defined for values less than the scale param.
          max_moment = min(6, scale // 2)
          sampler = self._Sampler(
              20000, alpha, 1 / scale, dt, use_gpu=False, seed=12345)
          z_scores = util.test_moment_matching(
              sampler(),
              max_moment,
              stats.gamma(alpha, scale=scale),
              stride=stride,
          )
          self.assertAllLess(z_scores, z_limit)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:29,代码来源:random_gamma_test.py

示例2: train

  def train(self, delay_secs=None):
    """Fit the estimator using the training data.

    Train the estimator for `self._train_steps` steps, after waiting for
    `delay_secs` seconds. If `self._train_steps` is `None`, train forever.

    Args:
      delay_secs: Start training after this many seconds.

    Returns:
      The trained estimator.
    """
    start = time.time()

    # Start the server, if needed. It's important to start the server before
    # we (optionally) sleep for the case where no device_filters are set.
    # Otherwise, the servers will wait to connect to each other before starting
    # to train. We might as well start as soon as we can.
    config = self._estimator.config
    if isinstance(config, run_config.RunConfig):
      if (config.cluster_spec and config.master and
          config.environment == run_config.Environment.LOCAL):
        logging.warn("ClusterSpec and master are provided, but environment is "
                     "set to 'local'. Set environment to 'cloud' if you intend "
                     "to use the distributed runtime.")
      if (config.environment != run_config.Environment.LOCAL and
          config.environment != run_config.Environment.GOOGLE and
          config.cluster_spec and config.master):
        self._start_server()
    elif config.cluster_spec and config.master:
      raise ValueError(
          "For distributed runtime, Experiment class only works with "
          "tf.contrib.learn.RunConfig for now, but provided {}".format(
              type(config)))

    extra_hooks = []
    if delay_secs is None:
      task_id = self._estimator.config.task_id or 0
      if self._delay_workers_by_global_step:
        # Wait 5500 global steps for the second worker. Each worker waits more
        # then previous one but with a diminishing number of steps.
        extra_hooks.append(
            basic_session_run_hooks.GlobalStepWaiterHook(
                int(8000.0 * math.log(task_id + 1))))
        delay_secs = 0
      else:
        # Wait 5 secs more for each new worker up to 60 secs.
        delay_secs = min(60, task_id * 5)

    if delay_secs > 0:
      elapsed_secs = time.time() - start
      remaining = delay_secs - elapsed_secs
      logging.info("Waiting %d secs before starting training.", remaining)
      time.sleep(delay_secs)

    return self._call_train(
        input_fn=self._train_input_fn,
        max_steps=self._train_steps,
        hooks=self._train_monitors + extra_hooks,
        saving_listeners=self._saving_listeners)
开发者ID:KiaraStarlab,项目名称:tensorflow,代码行数:60,代码来源:experiment.py

示例3: surrogate_loss

def surrogate_loss(sample_losses,
                   stochastic_tensors=None,
                   name="SurrogateLoss"):
  """Surrogate loss for stochastic graphs.

  This function will call `loss_fn` on each `StochasticTensor`
  upstream of `sample_losses`, passing the losses that it influenced.

  Note that currently `surrogate_loss` does not work with `StochasticTensor`s
  instantiated in `while_loop`s or other control structures.

  Args:
    sample_losses: a list or tuple of final losses. Each loss should be per
      example in the batch (and possibly per sample); that is, it should have
      dimensionality of 1 or greater. All losses should have the same shape.
    stochastic_tensors: a list of `StochasticTensor`s to add loss terms for.
      If None, defaults to all `StochasticTensor`s in the graph upstream of
      the `Tensor`s in `sample_losses`.
    name: the name with which to prepend created ops.

  Returns:
    `Tensor` loss, which is the sum of `sample_losses` and the
    `loss_fn`s returned by the `StochasticTensor`s.

  Raises:
    TypeError: if `sample_losses` is not a list or tuple, or if its elements
      are not `Tensor`s.
    ValueError: if any loss in `sample_losses` does not have dimensionality 1
      or greater.
  """
  with ops.op_scope(sample_losses, name):
    fixed_losses = []
    if not isinstance(sample_losses, (list, tuple)):
      raise TypeError("sample_losses must be a list or tuple")
    for loss in sample_losses:
      if not isinstance(loss, ops.Tensor):
        raise TypeError("loss is not a Tensor: %s" % loss)
      ndims = loss.get_shape().ndims
      if not (ndims is not None and ndims >= 1):
        raise ValueError("loss must have dimensionality 1 or greater: %s" %
                         loss)
      fixed_losses.append(array_ops.stop_gradient(loss))

    stoch_dependencies_map = _stochastic_dependencies_map(
        fixed_losses, stochastic_tensors=stochastic_tensors)
    if not stoch_dependencies_map:
      logging.warn(
          "No collection of Stochastic Tensors found for current graph.")
      return math_ops.add_n(sample_losses)

    # Iterate through all of the stochastic dependencies, adding
    # surrogate terms where necessary.
    sample_losses = [ops.convert_to_tensor(loss) for loss in sample_losses]
    loss_terms = sample_losses
    for (stoch_node, dependent_losses) in stoch_dependencies_map.items():
      loss_term = stoch_node.loss(list(dependent_losses))
      if loss_term is not None:
        loss_terms.append(loss_term)

    return math_ops.add_n(loss_terms)
开发者ID:10imaging,项目名称:tensorflow,代码行数:60,代码来源:stochastic_graph.py

示例4: _check_trt_version_compatibility

def _check_trt_version_compatibility():
  """Check compatibility of TensorRT version.

  Raises:
    RuntimeError: if the TensorRT library version is incompatible.
  """
  compiled_version = get_linked_tensorrt_version()
  loaded_version = get_loaded_tensorrt_version()
  tf_logging.info("Linked TensorRT version: %s" % str(compiled_version))
  tf_logging.info("Loaded TensorRT version: %s" % str(loaded_version))
  version_mismatch = False
  if loaded_version[0] < compiled_version[0]:
    tf_logging.error(
        "TensorRT version mismatch. Tensorflow was compiled against " +
        "TensorRT %s but library loaded from environment is TensorRT %s" %
        (".".join([str(x) for x in compiled_version]),
         ".".join([str(x) for x in loaded_version])) +
        ". Please make sure that correct version of TensorRT " +
        "is available in the system and added to ldconfig or LD_LIBRARY_PATH")
    raise RuntimeError("Incompatible TensorRT library version")
  for i in zip(loaded_version, compiled_version):
    if i[0] != i[1]:
      tf_logging.warn("TensorRT mismatch. Compiled against version " +
                      "%s, but loaded %s. Things may not work" %
                      (".".join([str(x) for x in compiled_version]),
                       ".".join([str(x) for x in loaded_version])))
      version_mismatch = True
      break
  if not version_mismatch:
    tf_logging.info("Running against TensorRT version %s" %
                    ".".join([str(x) for x in loaded_version]))
开发者ID:aritratony,项目名称:tensorflow,代码行数:31,代码来源:trt_convert.py

示例5: __init__

  def __init__(self, num_units, forget_bias=1.0,
               state_is_tuple=True, activation=None, reuse=None):
    """Initialize the basic LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
        Must set to `0.0` manually when restoring from CudnnLSTM-trained
        checkpoints.
      state_is_tuple: If True, accepted and returned states are 2-tuples of
        the `c_state` and `m_state`.  If False, they are concatenated
        along the column axis.  The latter behavior will soon be deprecated.
      activation: Activation function of the inner states.  Default: `tanh`.
      reuse: (optional) Python boolean describing whether to reuse variables
        in an existing scope.  If not `True`, and the existing scope already has
        the given variables, an error is raised.
    """
    super(BasicLSTMCell, self).__init__(_reuse=reuse)
    if not state_is_tuple:
      logging.warn("%s: Using a concatenated state is slower and will soon be "
                   "deprecated.  Use state_is_tuple=True.", self)
    self._num_units = num_units
    self._forget_bias = forget_bias
    self._state_is_tuple = state_is_tuple
    self._activation = activation or math_ops.tanh
开发者ID:eduardofv,项目名称:tensorflow,代码行数:25,代码来源:rnn_cell_impl.py

示例6: _testZeroDensity

  def _testZeroDensity(self, alpha):
    """Zero isn't in the support of the gamma distribution.

    But quantized floating point math has its limits.
    TODO(bjp): Implement log-gamma sampler for small-shape distributions.

    Args:
      alpha: float shape value to test
    """
    try:
      from scipy import stats  # pylint: disable=g-import-not-at-top
    except ImportError as e:
      tf_logging.warn("Cannot test zero density proportions: %s" % e)
      return
    allowable_zeros = {
        dtypes.float16: stats.gamma(alpha).cdf(np.finfo(np.float16).tiny),
        dtypes.float32: stats.gamma(alpha).cdf(np.finfo(np.float32).tiny),
        dtypes.float64: stats.gamma(alpha).cdf(np.finfo(np.float64).tiny)
    }
    failures = []
    for use_gpu in [False, True]:
      for dt in dtypes.float16, dtypes.float32, dtypes.float64:
        sampler = self._Sampler(
            10000, alpha, 1.0, dt, use_gpu=use_gpu, seed=12345)
        x = sampler()
        allowable = allowable_zeros[dt] * x.size
        allowable = allowable * 2 if allowable < 10 else allowable * 1.05
        if np.sum(x <= 0) > allowable:
          failures += [(use_gpu, dt)]
      self.assertEqual([], failures)
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:30,代码来源:random_gamma_test.py

示例7: validateKolmogorovSmirnov

  def validateKolmogorovSmirnov(self,
                                shape,
                                mean,
                                stddev,
                                minval,
                                maxval,
                                seed=1618):
    try:
      import scipy.stats  # pylint: disable=g-import-not-at-top
      random_seed.set_random_seed(seed)
      with self.test_session(use_gpu=True):
        samples = random_ops.parameterized_truncated_normal(shape, mean, stddev,
                                                            minval,
                                                            maxval).eval()
      assert (~np.isnan(samples)).all()
      minval = max(mean - stddev * 10, minval)
      maxval = min(mean + stddev * 10, maxval)
      dist = scipy.stats.norm(loc=mean, scale=stddev)
      cdf_min = dist.cdf(minval)
      cdf_max = dist.cdf(maxval)

      def truncated_cdf(x):
        return np.clip((dist.cdf(x) - cdf_min) / (cdf_max - cdf_min), 0.0, 1.0)

      pvalue = scipy.stats.kstest(samples, truncated_cdf)[1]
      self.assertGreater(pvalue, 1e-10)
    except ImportError as e:
      tf_logging.warn("Cannot test truncated normal op: %s" % str(e))
开发者ID:1000sprites,项目名称:tensorflow,代码行数:28,代码来源:parameterized_truncated_normal_op_test.py

示例8: _get_timestamped_export_dir

def _get_timestamped_export_dir(export_dir_base):
  # When we create a timestamped directory, there is a small chance that the
  # directory already exists because another worker is also writing exports.
  # In this case we just wait one second to get a new timestamp and try again.
  # If this fails several times in a row, then something is seriously wrong.
  max_directory_creation_attempts = 10

  attempts = 0
  while attempts < max_directory_creation_attempts:
    export_timestamp = int(time.time())

    export_dir = os.path.join(
        compat.as_bytes(export_dir_base), compat.as_bytes(
            str(export_timestamp)))
    if not gfile.Exists(export_dir):
      # Collisions are still possible (though extremely unlikely): this
      # directory is not actually created yet, but it will be almost
      # instantly on return from this function.
      return export_dir
    time.sleep(1)
    attempts += 1
    logging.warn(
        "Export directory {} already exists; retrying (attempt {}/{})".format(
            export_dir, attempts, max_directory_creation_attempts))
  raise RuntimeError("Failed to obtain a unique export directory name after "
                     "{} attempts.".format(max_directory_creation_attempts))
开发者ID:alexsax,项目名称:tensorflow,代码行数:26,代码来源:exporter_test.py

示例9: __init__

  def __init__(self, num_units, forget_bias=1.0, input_size=None,
               state_is_tuple=True, activation=tanh, reuse=None):
    """Initialize the basic LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
      input_size: Deprecated and unused.
      state_is_tuple: If True, accepted and returned states are 2-tuples of
        the `c_state` and `m_state`.  If False, they are concatenated
        along the column axis.  The latter behavior will soon be deprecated.
      activation: Activation function of the inner states.
      reuse: (optional) Python boolean describing whether to reuse variables
        in an existing scope.  If not `True`, and the existing scope already has
        the given variables, an error is raised.
    """
    if not state_is_tuple:
      logging.warn("%s: Using a concatenated state is slower and will soon be "
                   "deprecated.  Use state_is_tuple=True.", self)
    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)
    self._num_units = num_units
    self._forget_bias = forget_bias
    self._state_is_tuple = state_is_tuple
    self._activation = activation
    self._reuse = reuse
开发者ID:LUTAN,项目名称:tensorflow,代码行数:26,代码来源:core_rnn_cell_impl.py

示例10: _testCompareToExplicitDerivative

  def _testCompareToExplicitDerivative(self, dtype):
    """Compare to the explicit reparameterization derivative.

    Verifies that the computed derivative satisfies
    dsample / dalpha = d igammainv(alpha, u) / dalpha,
    where u = igamma(alpha, sample).

    Args:
      dtype: TensorFlow dtype to perform the computations in.
    """
    delta = 1e-3
    np_dtype = dtype.as_numpy_dtype
    try:
      from scipy import misc  # pylint: disable=g-import-not-at-top
      from scipy import special  # pylint: disable=g-import-not-at-top

      alpha_val = np.logspace(-2, 3, dtype=np_dtype)
      alpha = constant_op.constant(alpha_val)
      sample = random_ops.random_gamma([], alpha, np_dtype(1.0), dtype=dtype)
      actual = gradients_impl.gradients(sample, alpha)[0]

      (sample_val, actual_val) = self.evaluate((sample, actual))

      u = special.gammainc(alpha_val, sample_val)
      expected_val = misc.derivative(
          lambda alpha_prime: special.gammaincinv(alpha_prime, u),
          alpha_val, dx=delta * alpha_val)

      self.assertAllClose(actual_val, expected_val, rtol=1e-3, atol=1e-3)
    except ImportError as e:
      tf_logging.warn("Cannot use special functions in a test: %s" % str(e))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:31,代码来源:random_grad_test.py

示例11: __init__

  def __init__(self, num_units, recurrence_depth=1, transfer_bias=-2.0, input_size=None,
               state_is_tuple=False, activation=tanh):
    """Initialize the basic RHN cell.

    Args:
      num_units: int, The number of units per recurrence depth in the RHN cell.
      forget_bias: float, The bias added to forget gates (see above).
      recurrence_depth: int, Number of recurrent layers in the RHN network
      input_size: Deprecated and unused.
      state_is_tuple: If True, accepted and returned states are 1-tuple of
        the `m_state`.  By default (False).
        This default behavior will soon be deprecated.
      activation: Activation function of the inner states.
    """
    if not state_is_tuple:
      logging.warn(
          "%s: Using a concatenated state is slower and will soon be "
          "deprecated.  Use state_is_tuple=True." % self)
    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated." % self)
    self._num_units = num_units
    self._recurrence_depth = recurrence_depth
    self._transfer_bias = transfer_bias
    self._state_is_tuple = state_is_tuple
    self._activation = activation
开发者ID:julian121266,项目名称:tensorflow,代码行数:25,代码来源:rnn_cell.py

示例12: _changing_default_center_bias

def _changing_default_center_bias():
  logging.warn(
      "Change warning: default value of `enable_centered_bias` will change"
      " after 2016-10-09. It will be disabled by default."
      "Instructions for keeping existing behaviour:\n"
      "Explicitly set `enable_centered_bias` to 'True' if you want to keep "
      "existing behaviour.")
开发者ID:Qstar,项目名称:tensorflow,代码行数:7,代码来源:dnn_linear_combined.py

示例13: __init__

  def __init__(self, num_units, forget_bias=1.0,
               state_is_tuple=True, activation=None, reuse=None, name=None):
    """Initialize the basic LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
        Must set to `0.0` manually when restoring from CudnnLSTM-trained
        checkpoints.
      state_is_tuple: If True, accepted and returned states are 2-tuples of
        the `c_state` and `m_state`.  If False, they are concatenated
        along the column axis.  The latter behavior will soon be deprecated.
      activation: Activation function of the inner states.  Default: `tanh`.
      reuse: (optional) Python boolean describing whether to reuse variables
        in an existing scope.  If not `True`, and the existing scope already has
        the given variables, an error is raised.
      name: String, the name of the layer. Layers with the same name will
        share weights, but to avoid mistakes we require reuse=True in such
        cases.

      When restoring from CudnnLSTM-trained checkpoints, must use
      `CudnnCompatibleLSTMCell` instead.
    """
    super(BasicLSTMCell, self).__init__(_reuse=reuse, name=name)
    if not state_is_tuple:
      logging.warn("%s: Using a concatenated state is slower and will soon be "
                   "deprecated.  Use state_is_tuple=True.", self)

    # Inputs must be 2-dimensional.
    self.input_spec = base_layer.InputSpec(ndim=2)

    self._num_units = num_units
    self._forget_bias = forget_bias
    self._state_is_tuple = state_is_tuple
    self._activation = activation or math_ops.tanh
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:35,代码来源:rnn_cell_impl.py

示例14: _write_dict_to_summary

def _write_dict_to_summary(output_dir,
                           dictionary,
                           current_global_step):
  """Writes a `dict` into summary file in given output directory.

  Args:
    output_dir: `str`, directory to write the summary file in.
    dictionary: the `dict` to be written to summary file.
    current_global_step: `int`, the current global step.
  """
  logging.info('Saving dict for global step %d: %s', current_global_step,
               _dict_to_str(dictionary))
  summary_writer = writer_cache.FileWriterCache.get(output_dir)
  summary_proto = summary_pb2.Summary()
  for key in dictionary:
    if dictionary[key] is None:
      continue
    if key == 'global_step':
      continue
    value = summary_proto.value.add()
    value.tag = key
    if (isinstance(dictionary[key], np.float32) or
        isinstance(dictionary[key], float)):
      value.simple_value = float(dictionary[key])
    elif (isinstance(dictionary[key], np.int64) or
          isinstance(dictionary[key], np.int32) or
          isinstance(dictionary[key], int)):
      value.simple_value = int(dictionary[key])
    else:
      logging.warn(
          'Skipping summary for %s, must be a float, np.float32, np.int64, '
          'np.int32 or int.',
          key)
  summary_writer.add_summary(summary_proto, current_global_step)
  summary_writer.flush()
开发者ID:ilya-edrenkin,项目名称:tensorflow,代码行数:35,代码来源:estimator.py

示例15: _garbage_collect_exports

  def _garbage_collect_exports(self, export_dir_base):
    """Deletes older exports, retaining only a given number of the most recent.

    Export subdirectories are assumed to be named with monotonically increasing
    integers; the most recent are taken to be those with the largest values.

    Args:
      export_dir_base: the base directory under which each export is in a
        versioned subdirectory.
    """
    if self._exports_to_keep is None:
      return

    def _export_version_parser(path):
      # create a simple parser that pulls the export_version from the directory.
      filename = os.path.basename(path.path)
      if not (len(filename) == 10 and filename.isdigit()):
        return None
      return path._replace(export_version=int(filename))

    # pylint: disable=protected-access
    keep_filter = gc._largest_export_versions(self._exports_to_keep)
    delete_filter = gc._negation(keep_filter)
    for p in delete_filter(
        gc._get_paths(export_dir_base, parser=_export_version_parser)):
      try:
        gfile.DeleteRecursively(p.path)
      except errors_impl.NotFoundError as e:
        tf_logging.warn('Can not delete %s recursively: %s', p.path, e)
开发者ID:jinxin0924,项目名称:tensorflow,代码行数:29,代码来源:exporter.py


注:本文中的tensorflow.python.platform.tf_logging.warn函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。