当前位置: 首页>>代码示例>>Python>>正文


Python tf_logging.vlog函数代码示例

本文整理汇总了Python中tensorflow.python.platform.tf_logging.vlog函数的典型用法代码示例。如果您正苦于以下问题:Python vlog函数的具体用法?Python vlog怎么用?Python vlog使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了vlog函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: benchmarkSamplingMVNDiag

  def benchmarkSamplingMVNDiag(self):
    logging.vlog(
        2, "mvn_diag\tuse_gpu\tcomponents\tbatch\tfeatures\tsample\twall_time")

    def create_distribution(batch_size, num_components, num_features):
      cat = ds.Categorical(
          logits=np.random.randn(batch_size, num_components))
      mus = [
          variables.Variable(np.random.randn(batch_size, num_features))
          for _ in range(num_components)
      ]
      sigmas = [
          variables.Variable(np.random.rand(batch_size, num_features))
          for _ in range(num_components)
      ]
      components = list(
          ds.MultivariateNormalDiag(
              loc=mu, scale_diag=sigma) for (mu, sigma) in zip(mus, sigmas))
      return ds.Mixture(cat, components, use_static_graph=self.use_static_graph)

    for use_gpu in False, True:
      if use_gpu and not test.is_gpu_available():
        continue
      for num_components in 1, 8, 16:
        for batch_size in 1, 32:
          for num_features in 1, 64, 512:
            for sample_size in 1, 32, 128:
              self._runSamplingBenchmark(
                  "mvn_diag",
                  create_distribution=create_distribution,
                  use_gpu=use_gpu,
                  num_components=num_components,
                  batch_size=batch_size,
                  num_features=num_features,
                  sample_size=sample_size)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:35,代码来源:mixture_test.py

示例2: _padding_size_conv_pool

def _padding_size_conv_pool(node, kernel_size, stride, input_resolution=None):
  """Computes padding size given a TF convolution or pooling node.

  Args:
    node: Tensorflow node (NodeDef proto).
    kernel_size: Kernel size of node (integer).
    stride: Stride size of node (integer).
    input_resolution: Input resolution to assume, if not None (integer).

  Returns:
    total_padding: Total padding size (integer).
    padding: Padding size, applied to the left or top (integer).

  Raises:
    ValueError: If padding is invalid.
  """
  # In this case, we need to carefully consider the different TF padding modes.
  # The padding depends on kernel size, and may depend on input size. If it
  # depends on input size and input_resolution is None, we raise an exception.
  padding_attr = node.attr["padding"]
  logging.vlog(4, "padding_attr = %s", padding_attr)
  if padding_attr.s in _VALID_PADDING:
    total_padding = 0
    padding = 0
  elif padding_attr.s in _SAME_PADDING:
    if input_resolution is None:
      # In this case, we do not know the input resolution, so we can only know
      # the padding in some special cases.
      if kernel_size == 1:
        total_padding = 0
        padding = 0
      elif stride == 1:
        total_padding = kernel_size - 1
        padding = int(math.floor(float(total_padding) / 2))
      elif stride == 2 and kernel_size % 2 == 0:
        # In this case, we can be sure of the left/top padding, but not of the
        # total padding.
        total_padding = None
        padding = int(math.floor((float(kernel_size) - 1) / 2))
      else:
        total_padding = None
        padding = None
        logging.warning(
            "Padding depends on input size, which means that the effective "
            "padding may be different depending on the input image "
            "dimensionality. In this case, alignment check will be skipped. If"
            " you know the input resolution, please set it.")
    else:
      # First, compute total_padding based on documentation.
      if input_resolution % stride == 0:
        total_padding = int(max(float(kernel_size - stride), 0.0))
      else:
        total_padding = int(
            max(float(kernel_size - (input_resolution % stride)), 0.0))
      # Then, compute left/top padding.
      padding = int(math.floor(float(total_padding) / 2))

  else:
    raise ValueError("Invalid padding operation %s" % padding_attr.s)
  return total_padding, padding
开发者ID:andrewharp,项目名称:tensorflow,代码行数:60,代码来源:parse_layer_parameters.py

示例3: _get_layer_params

def _get_layer_params(node, name_to_order_node):
  """Gets layer parameters relevant for RF computation.

  Currently, only these nodes are supported:
  - Conv2D
  - DepthwiseConv2dNative
  - Pad
  - MaxPool
  - AvgPool
  - all nodes listed in _UNCHANGED_RF_LAYER_OPS

  Args:
    node: Tensorflow node (NodeDef proto).
    name_to_order_node: Map from name to {order, node}. Output of
      graph_compute_order.get_compute_order().

  Returns:
    kernel_size_x: Kernel size for horizontal direction (integer).
    kernel_size_y: Kernel size for vertical direction (integer).
    stride_x: Stride size for horizontal direction (integer).
    stride_y: Stride size for vertical direction (integer).
    padding_x: Padding size for horizontal direction (integer).
    padding_y: Padding size for vertical direction (integer).

  Raises:
    ValueError: If layer op is unknown.
  """
  logging.vlog(3, "node.op = %s", node.op)
  logging.vlog(4, "node = %s", node)
  if node.op == "Conv2D" or node.op == "DepthwiseConv2dNative":
    stride_x, stride_y = _stride_size(node)
    kernel_size_x, kernel_size_y = _conv_kernel_size(node, name_to_order_node)
    # Compute the padding for this node separately for each direction.
    padding_x = _padding_size_conv_pool(node, kernel_size_x, stride_x)
    padding_y = _padding_size_conv_pool(node, kernel_size_y, stride_y)
  elif node.op == "Pad":
    # Kernel and stride are simply 1 in this case.
    kernel_size_x = 1
    kernel_size_y = 1
    stride_x = 1
    stride_y = 1
    padding_x, padding_y = _padding_size_pad_layer(node, name_to_order_node)
  elif node.op == "MaxPool" or node.op == "AvgPool":
    stride_x, stride_y = _stride_size(node)
    kernel_size_x, kernel_size_y = _pool_kernel_size(node)
    # Compute the padding for this node separately for each direction.
    padding_x = _padding_size_conv_pool(node, kernel_size_x, stride_x)
    padding_y = _padding_size_conv_pool(node, kernel_size_y, stride_y)
  elif node.op in _UNCHANGED_RF_LAYER_OPS:
    # These nodes do not modify the RF parameters.
    kernel_size_x = 1
    kernel_size_y = 1
    stride_x = 1
    stride_y = 1
    padding_x = 0
    padding_y = 0
  else:
    raise ValueError("Unknown layer for operation '%s': %s" % (node.name,
                                                               node.op))
  return kernel_size_x, kernel_size_y, stride_x, stride_y, padding_x, padding_y
开发者ID:Lin-jipeng,项目名称:tensorflow,代码行数:60,代码来源:receptive_field.py

示例4: _conv_kernel_size

def _conv_kernel_size(node, name_to_order_node):
  """Computes kernel size given a TF convolution or pooling node.

  Args:
    node: Tensorflow node (NodeDef proto).
    name_to_order_node: Map from name to {order, node}. Output of
      graph_compute_order.get_compute_order().

  Returns:
    kernel_size_x: Kernel size for horizontal direction (integer).
    kernel_size_y: Kernel size for vertical direction (integer).

  Raises:
    ValueError: If the weight layer node is invalid.
  """
  weights_layer_read_name = node.input[1]
  if not weights_layer_read_name.endswith("/read"):
    raise ValueError(
        "Weight layer's name input to conv layer does not end with '/read'")
  weights_layer_param_name = weights_layer_read_name[:-5]
  weights_node = name_to_order_node[weights_layer_param_name].node
  if weights_node.op != "VariableV2":
    raise ValueError("Weight layer is not of type VariableV2")
  shape = weights_node.attr["shape"]
  logging.vlog(4, "weight shape = %s", shape)
  kernel_size_y = shape.shape.dim[0].size
  kernel_size_x = shape.shape.dim[1].size
  return kernel_size_x, kernel_size_y
开发者ID:Lin-jipeng,项目名称:tensorflow,代码行数:28,代码来源:receptive_field.py

示例5: testImplicitLargeDiag

 def testImplicitLargeDiag(self):
   mu = np.array([[1., 2, 3],
                  [11, 22, 33]])      # shape: [b, k] = [2, 3]
   u = np.array([[[1., 2],
                  [3, 4],
                  [5, 6]],
                 [[0.5, 0.75],
                  [1, 0.25],
                  [1.5, 1.25]]])      # shape: [b, k, r] = [2, 3, 2]
   m = np.array([[0.1, 0.2],
                 [0.4, 0.5]])         # shape: [b, r] = [2, 2]
   scale = np.stack([
       np.eye(3) + np.matmul(np.matmul(u[0], np.diag(m[0])),
                             np.transpose(u[0])),
       np.eye(3) + np.matmul(np.matmul(u[1], np.diag(m[1])),
                             np.transpose(u[1])),
   ])
   cov = np.stack([np.matmul(scale[0], scale[0].T),
                   np.matmul(scale[1], scale[1].T)])
   logging.vlog(2, "expected_cov:\n{}".format(cov))
   with self.test_session():
     mvn = ds.MultivariateNormalDiagPlusLowRank(
         loc=mu,
         scale_perturb_factor=u,
         scale_perturb_diag=m)
     self.assertAllClose(cov, mvn.covariance().eval(), atol=0., rtol=1e-6)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:26,代码来源:mvn_diag_plus_low_rank_test.py

示例6: _time_performance_run_normal_lstm

  def _time_performance_run_normal_lstm(
      self, test_config, x_train, y_train):
    # Get performance number for standard LSTM on GPU.
    input_shape = test_config['input_shape']
    rnn_state_size = test_config['rnn_state_size']
    timestep = test_config['timestep']
    epoch = test_config['epoch']
    warmup_epoch = test_config['warmup_epoch']

    ops.reset_default_graph()
    with self.test_session(use_gpu=True):
      layer = keras.layers.LSTM(rnn_state_size)
      inputs = keras.layers.Input(
          shape=[timestep, input_shape], dtype=dtypes.float32)

      outputs = layer(inputs)
      model = keras.models.Model(inputs, outputs)
      model.compile('sgd', 'mse')

      total_duration = 0
      for i in range(epoch):
        start_time = time.time()
        model.fit(x_train, y_train)
        end_time = time.time()
        if i >= warmup_epoch:
          duration_per_epoch = end_time - start_time
          total_duration += duration_per_epoch
          logging.vlog(2, '%s: Time consumed for epoch %d is: %s',
                       'Normal LSTM', i, duration_per_epoch)
      logging.info('Average performance for %s per epoch is: %s',
                   'Normal LSTM', (total_duration / epoch))
      return total_duration / epoch
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:32,代码来源:unified_rnn_test.py

示例7: register

  def register(self, candidate, name=None):
    """Registers a Python object "candidate" for the given "name".

    Args:
      candidate: The candidate object to add to the registry.
      name: An optional string specifying the registry key for the candidate.
            If None, candidate.__name__ will be used.
    Raises:
      KeyError: If same name is used twice.
    """
    if not name:
      name = candidate.__name__
    if name in self._registry:
      (filename, line_number, function_name, _) = (
          self._registry[name][_LOCATION_TAG])
      raise KeyError("Registering two %s with name '%s'! "
                     "(Previous registration was in %s %s:%d)" %
                     (self._name, name, function_name, filename, line_number))

    logging.vlog(1, "Registering %s (%s) in %s.", name, candidate, self._name)
    # stack trace is [this_function, Register(), user_function,...]
    # so the user function is #2.
    stack = tf_stack.extract_stack()
    stack_index = min(2, len(stack)-1)
    if stack_index >= 0:
      user_function = stack[stack_index]
      location_tag = tf_stack.convert_stack([user_function])[0]
    else:
      location_tag = "UNKNOWN"
    self._registry[name] = {_TYPE_TAG: candidate, _LOCATION_TAG: location_tag}
开发者ID:kylin9872,项目名称:tensorflow,代码行数:30,代码来源:registry.py

示例8: _integrator_conserves_energy

  def _integrator_conserves_energy(self, x, event_dims, sess,
                                   feed_dict=None):
    def potential_and_grad(x):
      log_prob, grad = self._log_gamma_log_prob_grad(x, event_dims)
      return -log_prob, -grad

    step_size = array_ops.placeholder(np.float32, [], name='step_size')
    hmc_lf_steps = array_ops.placeholder(np.int32, [], name='hmc_lf_steps')

    if feed_dict is None:
      feed_dict = {}
    feed_dict[hmc_lf_steps] = 1000

    m = random_ops.random_normal(array_ops.shape(x))
    potential_0, grad_0 = potential_and_grad(x)
    old_energy = potential_0 + 0.5 * math_ops.reduce_sum(m * m,
                                                         event_dims)

    _, new_m, potential_1, _ = (
        hmc.leapfrog_integrator(step_size, hmc_lf_steps, x,
                                m, potential_and_grad, grad_0))

    new_energy = potential_1 + 0.5 * math_ops.reduce_sum(new_m * new_m,
                                                         event_dims)

    x_shape = sess.run(x, feed_dict).shape
    n_event_dims = self._n_event_dims(x_shape, event_dims)
    feed_dict[step_size] = 0.1 / n_event_dims
    old_energy_val, new_energy_val = sess.run([old_energy, new_energy],
                                              feed_dict)
    logging.vlog(1, 'average energy change: {}'.format(
        abs(old_energy_val - new_energy_val).mean()))

    self.assertAllEqual(np.ones_like(new_energy_val, dtype=np.bool),
                        abs(old_energy_val - new_energy_val) < 1.)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:35,代码来源:hmc_test.py

示例9: _time_performance_run_unifed_lstm_gpu

  def _time_performance_run_unifed_lstm_gpu(
      self, test_config, x_train, y_train):
    # Get performance number for Unified_LSTM with grappler swap the impl
    input_shape = test_config['input_shape']
    rnn_state_size = test_config['rnn_state_size']
    timestep = test_config['timestep']
    epoch = test_config['epoch']
    warmup_epoch = test_config['warmup_epoch']

    ops.reset_default_graph()
    K.set_session(session.Session(config=self.config))
    layer = UnifiedLSTM(rnn_state_size)
    inputs = keras.layers.Input(
        shape=[timestep, input_shape], dtype=dtypes.float32)

    outputs, _ = layer(inputs)
    model = keras.models.Model(inputs, outputs)
    model.compile('sgd', 'mse')

    total_duration = 0
    for i in range(epoch):
      start_time = time.time()
      model.fit(x_train, y_train)
      end_time = time.time()
      if i >= warmup_epoch:
        duration_per_epoch = end_time - start_time
        total_duration += duration_per_epoch
        logging.vlog(2, '%s: Time consumed for epoch %d is: %s',
                     'Unified LSTM', i, duration_per_epoch)
    logging.info('Average performance for %s per epoch is: %s',
                 'Unified LSTM', (total_duration / epoch))
    return total_duration / epoch
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:32,代码来源:unified_rnn_test.py

示例10: _ais_gets_correct_log_normalizer

  def _ais_gets_correct_log_normalizer(self, init, event_dims, sess,
                                       feed_dict=None):
    def proposal_log_prob(x):
      return math_ops.reduce_sum(-0.5 * x * x - 0.5 * np.log(2*np.pi),
                                 event_dims)

    def target_log_prob(x):
      return self._log_gamma_log_prob(x, event_dims)

    if feed_dict is None:
      feed_dict = {}

    w, _, _ = hmc.ais_chain(200, 0.5, 2, init, target_log_prob,
                            proposal_log_prob, event_dims)

    w_val = sess.run(w, feed_dict)
    init_shape = sess.run(init, feed_dict).shape
    normalizer_multiplier = np.prod([init_shape[i] for i in event_dims])

    true_normalizer = -self._shape_param * np.log(self._rate_param)
    true_normalizer += special.gammaln(self._shape_param)
    true_normalizer *= normalizer_multiplier

    n_weights = np.prod(w_val.shape)
    normalized_w = np.exp(w_val - true_normalizer)
    standard_error = np.std(normalized_w) / np.sqrt(n_weights)
    logging.vlog(1, 'True normalizer {}, estimated {}, n_weights {}'.format(
        true_normalizer, np.log(normalized_w.mean()) + true_normalizer,
        n_weights))
    self.assertNear(normalized_w.mean(), 1.0, 4.0 * standard_error)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:30,代码来源:hmc_test.py

示例11: _chain_gets_correct_expectations

  def _chain_gets_correct_expectations(self, x, event_dims, sess,
                                       feed_dict=None):
    def log_gamma_log_prob(x):
      return self._log_gamma_log_prob(x, event_dims)

    step_size = array_ops.placeholder(np.float32, [], name='step_size')
    hmc_lf_steps = array_ops.placeholder(np.int32, [], name='hmc_lf_steps')
    hmc_n_steps = array_ops.placeholder(np.int32, [], name='hmc_n_steps')

    if feed_dict is None:
      feed_dict = {}
    feed_dict.update({step_size: 0.1,
                      hmc_lf_steps: 2,
                      hmc_n_steps: 300})

    sample_chain, acceptance_prob_chain = hmc.chain([hmc_n_steps],
                                                    step_size,
                                                    hmc_lf_steps,
                                                    x, log_gamma_log_prob,
                                                    event_dims)

    acceptance_probs, samples = sess.run([acceptance_prob_chain, sample_chain],
                                         feed_dict)
    samples = samples[feed_dict[hmc_n_steps] // 2:]
    expected_x_est = samples.mean()
    expected_exp_x_est = np.exp(samples).mean()

    logging.vlog(1, 'True      E[x, exp(x)]: {}\t{}'.format(
        self._expected_x, self._expected_exp_x))
    logging.vlog(1, 'Estimated E[x, exp(x)]: {}\t{}'.format(
        expected_x_est, expected_exp_x_est))
    self.assertNear(expected_x_est, self._expected_x, 2e-2)
    self.assertNear(expected_exp_x_est, self._expected_exp_x, 2e-2)
    self.assertTrue((acceptance_probs > 0.5).all())
    self.assertTrue((acceptance_probs <= 1.0).all())
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:35,代码来源:hmc_test.py

示例12: _stride_size

def _stride_size(node, name_to_node):
  """Computes stride size given a TF node.

  Args:
    node: Tensorflow node (NodeDef proto).

  Returns:
    stride_x: Stride size for horizontal direction (integer).
    stride_y: Stride size for vertical direction (integer).
  """
  if node.op == "MaxPoolV2":
    strides_input_name = node.input[2]
    if not strides_input_name.endswith("/strides"):
      raise ValueError("Strides name does not end with '/strides'")
    strides_node = name_to_node[strides_input_name]
    value = strides_node.attr["value"]
    t = make_ndarray(value.tensor)
    stride_y = t[1]
    stride_x = t[2]
  else:
    strides_attr = node.attr["strides"]
    logging.vlog(4, "strides_attr = %s", strides_attr)
    stride_y = strides_attr.list.i[1]
    stride_x = strides_attr.list.i[2]
  return stride_x, stride_y
开发者ID:craffel,项目名称:tensorflow,代码行数:25,代码来源:parse_layer_parameters.py

示例13: _runSamplingBenchmark

 def _runSamplingBenchmark(self, name, create_distribution, use_gpu,
                           num_components, batch_size, num_features,
                           sample_size):
   config = config_pb2.ConfigProto()
   config.allow_soft_placement = True
   np.random.seed(127)
   with session.Session(config=config, graph=ops.Graph()) as sess:
     random_seed.set_random_seed(0)
     with ops.device("/device:GPU:0" if use_gpu else "/cpu:0"):
       mixture = create_distribution(
           num_components=num_components,
           batch_size=batch_size,
           num_features=num_features)
       sample_op = mixture.sample(sample_size).op
       sess.run(variables.global_variables_initializer())
       reported = self.run_op_benchmark(
           sess,
           sample_op,
           min_iters=10,
           name=("%s_%s_components_%d_batch_%d_features_%d_sample_%d" %
                 (name, use_gpu, num_components, batch_size, num_features,
                  sample_size)))
       logging.vlog(2, "\t".join(["%s", "%d", "%d", "%d", "%d", "%g"]) % (
           use_gpu, num_components, batch_size, num_features, sample_size,
           reported["wall_time"]))
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:25,代码来源:mixture_test.py

示例14: _compute_numeric_jacobian

def _compute_numeric_jacobian(x, x_shape, x_data, y, y_shape, delta,
                              extra_feed_dict):
  """Computes the numeric Jacobian for dy/dx.

  Computes the numeric Jacobian by slightly perturbing the inputs and
  measuring the differences on the output.

  Args:
    x: the tensor "x".
    x_shape: the dimensions of x as a tuple or an array of ints.
    x_data: a numpy array as the input data for x
    y: the tensor "y".
    y_shape: the dimensions of y as a tuple or an array of ints.
    delta: the amount of perturbation we give to the input
    extra_feed_dict: dict that allows fixing specified tensor values
      during the jacobian calculation.

  Returns:
    A 2-d numpy array representing the Jacobian for dy/dx. It has "x_size" rows
    and "y_size" columns where "x_size" is the number of elements in x and
    "y_size" is the number of elements in y.
  """
  # bfloat16 doesn't have enough bits to represent high precision numbers such
  # as delta. Convert to float32 here. Since numeric_jacobian is expected to
  # be the groundtruth to compare against, it shouldn't lose any information.
  if x.dtype == dtypes.bfloat16:
    x = math_ops.cast(x, dtypes.float32)  # TODO(wangpeng): Now that the new x
            # is an output of the old x, isn't feeding to the new x a mistake?
  if y.dtype == dtypes.bfloat16:
    y = math_ops.cast(y, dtypes.float32)
  if x_data.dtype == dtypes.bfloat16.as_numpy_dtype:
    x_data = x_data.astype(np.float32)

  # To compute the jacobian, we treat x and y as one-dimensional vectors
  x_size = _product(x_shape) * (2 if x.dtype.is_complex else 1)
  y_size = _product(y_shape) * (2 if y.dtype.is_complex else 1)
  x_dtype = x.dtype.real_dtype.as_numpy_dtype
  y_dtype = y.dtype.real_dtype.as_numpy_dtype

  # Make sure we have the right types
  x_data = np.asarray(x_data, dtype=x.dtype.as_numpy_dtype)
  scale = np.asarray(2 * delta, dtype=y_dtype)[()]

  jacobian = np.zeros((x_size, y_size), dtype=x_dtype)
  # For each of the entry of x, we slightly perturbs this by adding and
  # subtracting a delta and then compute difference between the outputs. This
  # will give us one row of the Jacobian matrix.
  for row in range(x_size):
    x_pos = x_data.copy()
    x_neg = x_data.copy()
    x_pos.ravel().view(x_dtype)[row] += delta
    y_pos = y.eval(feed_dict=_extra_feeds(extra_feed_dict, {x: x_pos}))
    x_neg.ravel().view(x_dtype)[row] -= delta
    y_neg = y.eval(feed_dict=_extra_feeds(extra_feed_dict, {x: x_neg}))
    diff = (y_pos - y_neg) / scale
    jacobian[row, :] = diff.ravel().view(y_dtype)

  logging.vlog(1, "Numeric Jacobian =\n%s", jacobian)
  return jacobian
开发者ID:aritratony,项目名称:tensorflow,代码行数:59,代码来源:gradient_checker.py

示例15: _chain_gets_correct_expectations

  def _chain_gets_correct_expectations(self, x, independent_chain_ndims,
                                       sess, feed_dict=None):
    counter = collections.Counter()
    def log_gamma_log_prob(x):
      counter["target_calls"] += 1
      event_dims = math_ops.range(independent_chain_ndims,
                                  array_ops.rank(x))
      return self._log_gamma_log_prob(x, event_dims)

    num_results = array_ops.placeholder(
        np.int32, [], name="num_results")
    step_size = array_ops.placeholder(
        np.float32, [], name="step_size")
    num_leapfrog_steps = array_ops.placeholder(
        np.int32, [], name="num_leapfrog_steps")

    if feed_dict is None:
      feed_dict = {}
    feed_dict.update({num_results: 150,
                      step_size: 0.05,
                      num_leapfrog_steps: 2})

    samples, kernel_results = hmc.sample_chain(
        num_results=num_results,
        target_log_prob_fn=log_gamma_log_prob,
        current_state=x,
        step_size=step_size,
        num_leapfrog_steps=num_leapfrog_steps,
        num_burnin_steps=150,
        seed=42)

    self.assertAllEqual(dict(target_calls=2), counter)

    expected_x = (math_ops.digamma(self._shape_param)
                  - np.log(self._rate_param))

    expected_exp_x = self._shape_param / self._rate_param

    log_accept_ratio_, samples_, expected_x_ = sess.run(
        [kernel_results.log_accept_ratio, samples, expected_x],
        feed_dict)

    actual_x = samples_.mean()
    actual_exp_x = np.exp(samples_).mean()
    acceptance_probs = np.exp(np.minimum(log_accept_ratio_, 0.))

    logging_ops.vlog(1, "True      E[x, exp(x)]: {}\t{}".format(
        expected_x_, expected_exp_x))
    logging_ops.vlog(1, "Estimated E[x, exp(x)]: {}\t{}".format(
        actual_x, actual_exp_x))
    self.assertNear(actual_x, expected_x_, 2e-2)
    self.assertNear(actual_exp_x, expected_exp_x, 2e-2)
    self.assertAllEqual(np.ones_like(acceptance_probs, np.bool),
                        acceptance_probs > 0.5)
    self.assertAllEqual(np.ones_like(acceptance_probs, np.bool),
                        acceptance_probs <= 1.)
开发者ID:QiangCai,项目名称:tensorflow,代码行数:56,代码来源:hmc_test.py


注:本文中的tensorflow.python.platform.tf_logging.vlog函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。