当前位置: 首页>>代码示例>>Python>>正文


Python tf_logging.info函数代码示例

本文整理汇总了Python中tensorflow.python.platform.tf_logging.info函数的典型用法代码示例。如果您正苦于以下问题:Python info函数的具体用法?Python info怎么用?Python info使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了info函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testGeneratesStacktrace

  def testGeneratesStacktrace(self):
    if FLAGS.child:
      return

    # Subprocess sys.argv[0] with --child=True
    if sys.executable:
      child_process = subprocess.Popen(
          [sys.executable, sys.argv[0], '--child=True'], cwd=os.getcwd(),
          stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    else:
      child_process = subprocess.Popen(
          [sys.argv[0], '--child=True'], cwd=os.getcwd(),
          stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    # Capture its output. capture both stdout and stderr and append them.
    # We are not worried about timing or order of messages in this test.
    child_stdout, child_stderr = child_process.communicate()
    child_output = child_stdout + child_stderr

    # Make sure the child process is dead before we proceed.
    child_process.wait()

    logging.info('Output from the child process:')
    logging.info(child_output)

    # Verify a stack trace is printed.
    self.assertIn(b'PyEval_EvalFrame', child_output)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:27,代码来源:stacktrace_handler_test.py

示例2: setUpClass

  def setUpClass(cls):
    gpu_memory_fraction_opt = (
        "--gpu_memory_fraction=%f" % cls.PER_PROC_GPU_MEMORY_FRACTION)

    worker_port = portpicker.pick_unused_port()
    cluster_spec = "worker|localhost:%d" % worker_port
    tf_logging.info("cluster_spec: %s", cluster_spec)

    server_bin = test.test_src_dir_path("python/debug/grpc_tensorflow_server")

    cls.server_target = "grpc://localhost:%d" % worker_port

    cls.server_procs = {}
    cls.server_procs["worker"] = subprocess.Popen(
        [
            server_bin,
            "--cluster_spec=%s" % cluster_spec,
            "--job_name=worker",
            "--task_id=0",
            gpu_memory_fraction_opt,
        ],
        stdout=sys.stdout,
        stderr=sys.stderr)

    # Start debug server in-process, on separate thread.
    (cls.debug_server_port, cls.debug_server_url, _, cls.debug_server_thread,
     cls.debug_server
    ) = grpc_debug_test_server.start_server_on_separate_thread(
        dump_to_filesystem=False)
    tf_logging.info("debug server url: %s", cls.debug_server_url)

    cls.session_config = config_pb2.ConfigProto(
        gpu_options=config_pb2.GPUOptions(
            per_process_gpu_memory_fraction=cls.PER_PROC_GPU_MEMORY_FRACTION))
开发者ID:perfmjs,项目名称:tensorflow,代码行数:34,代码来源:dist_session_debug_grpc_test.py

示例3: add_gradients_summaries

def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).

  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '_gradient', grad_values))
      summaries.append(
          summary.scalar(var.op.name + '_gradient_norm',
                         clip_ops.global_norm([grad_values])))
    else:
      logging.info('Var %s has no gradient', var.op.name)

  return summaries
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:25,代码来源:training.py

示例4: _extract_feature_ids

  def _extract_feature_ids(self, state, network_states, during_training):
    """Extracts feature IDs and advances a batch using the oracle path.

    Args:
      state: MasterState from the 'AdvanceMaster' op that advances the
          underlying master to this component.
      network_states: Dictionary of component NetworkState objects.
      during_training: Whether the graph is being constructed during training.

    Returns:
      state handle: Final state after advancing.
    """
    logging.info('Building component: %s', self.spec.name)

    if during_training:
      stride = state.current_batch_size * self.training_beam_size
    else:
      stride = state.current_batch_size * self.inference_beam_size

    with tf.variable_scope(self.name, reuse=True):
      state.handle, ids = extract_fixed_feature_ids(self, state, stride)

    with tf.variable_scope(self.name, reuse=True):
      tensors = self.network.create(
          ids, [], None, None, during_training, stride=stride)
    update_network_states(self, tensors, network_states, stride)
    return state.handle
开发者ID:NoPointExc,项目名称:models,代码行数:27,代码来源:bulk_component.py

示例5: testUnrollLSTMGrad

  def testUnrollLSTMGrad(self):
    # Run one step of the unrolled lstm graph.
    def RunForwardBackward(mode, cfg=None):
      tf_logging.info("mode = %s", mode)
      g = ops.Graph()
      start = time.time()
      with g.as_default():
        weights = self._Weights()
        inp = self._Input()
        m = self._BuildForward(weights, inp, mode)
        loss = math_ops.reduce_sum(math_ops.square(m))
        dw = gradients_impl.gradients([loss], [weights])
      gdef = g.as_graph_def()
      finish = time.time()
      tf_logging.info("time: %f txt size: %d gdef bin size: %d", finish - start,
                      len(str(gdef)), len(gdef.SerializeToString()))
      with g.as_default(), session.Session(config=cfg) as sess:
        return sess.run(dw)

    d0 = RunForwardBackward("complete")
    for cfg in _OptimizerOptions():
      tf_logging.info("cfg = %s", cfg)
      d1 = RunForwardBackward("cell", cfg)
      d2 = RunForwardBackward("loop", cfg)
      d3 = RunForwardBackward("loop10", cfg)
      self.assertAllClose(d0, d1, rtol=1e-4, atol=1e-4)
      self.assertAllClose(d0, d2, rtol=1e-4, atol=1e-4)
      self.assertAllClose(d0, d3, rtol=1e-4, atol=1e-4)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:28,代码来源:function_test.py

示例6: _get_device_assignment

  def _get_device_assignment(self):
    """Gets the (maybe cached) TPU device assignment."""
    master = self._get_master_address()
    device_assignment = self._lazy_device_assignment_dict.get(master)
    if device_assignment is not None:
      return device_assignment

    tpu_system_metadata = self._get_tpu_system_metadata()

    device_assignment = tpu_device_assignment.device_assignment(
        tpu_system_metadata.topology,
        computation_shape=self._computation_shape,
        num_replicas=self.num_replicas)

    logging.info('num_cores_per_replica: %s',
                 str(self._config.tpu_config.num_cores_per_replica))
    logging.info('computation_shape: %s', str(self._computation_shape))
    logging.info('num_replicas: %d', self.num_replicas)
    logging.info('device_assignment.topology.device_coordinates: %s',
                 str(device_assignment.topology.device_coordinates))
    logging.info('device_assignment.core_assignment: %s',
                 str(device_assignment.core_assignment))

    self._lazy_device_assignment_dict[master] = device_assignment
    return device_assignment
开发者ID:godyd2702,项目名称:tensorflow,代码行数:25,代码来源:tpu_context.py

示例7: _infer_model_as_iterable

  def _infer_model_as_iterable(
      self, checkpoint_path, predictions, feed_fn, return_dict):
    if feed_fn is None:
      feed_dicts = itertools.repeat(None)
    else:
      def _feed_fn():
        while True:
          yield feed_fn()
      feed_dicts = _feed_fn()

    try:
      for output_batch in graph_actions.run_feeds_iter(
          output_dict=predictions,
          feed_dicts=feed_dicts,
          restore_checkpoint_path=checkpoint_path):
        # Unpack batches into individual predictions
        if return_dict:
          batch_length = list(output_batch.values())[0].shape[0]
          for i in range(batch_length):
            yield {key: value[i] for key, value in output_batch.items()}
        else:
          for pred in output_batch['predictions']:
            yield pred

    except errors.OutOfRangeError:
      # We fall out of the above loop naturally if feed_fn raises StopIteration,
      # or we catch an OutOfRangeError if we've reached the end of inputs.
      logging.info('Reached end of inputs for predict_iter.')
开发者ID:Nishant23,项目名称:tensorflow,代码行数:28,代码来源:estimator.py

示例8: train

  def train(self, delay_secs=None):
    """Fit the estimator using the training data.

    Train the estimator for `self._train_steps` steps, after waiting for
    `delay_secs` seconds. If `self._train_steps` is `None`, train forever.

    Args:
      delay_secs: Start training after this many seconds.

    Returns:
      The trained estimator.
    """
    if delay_secs is None:
      task_id = 0
      if hasattr(FLAGS, "task"):
        task_id = FLAGS.task
      delay_secs = min(60, task_id*5)

    if delay_secs:
      logging.info("Waiting %d secs before starting training.", delay_secs)
      time.sleep(delay_secs)

    return self._estimator.fit(input_fn=self._train_input_fn,
                               max_steps=self._train_steps,
                               monitors=self._train_monitors)
开发者ID:AdamPalmar,项目名称:tensorflow,代码行数:25,代码来源:experiment.py

示例9: RunTraining

  def RunTraining(self, hyperparam_config):
    master_spec = self.LoadSpec('master_spec_link.textproto')

    self.assertTrue(isinstance(hyperparam_config, spec_pb2.GridPoint))
    gold_doc = sentence_pb2.Sentence()
    text_format.Parse(_DUMMY_GOLD_SENTENCE, gold_doc)
    gold_doc_2 = sentence_pb2.Sentence()
    text_format.Parse(_DUMMY_GOLD_SENTENCE_2, gold_doc_2)
    reader_strings = [
        gold_doc.SerializeToString(), gold_doc_2.SerializeToString()
    ]
    tf.logging.info('Generating graph with config: %s', hyperparam_config)
    with tf.Graph().as_default():
      builder = graph_builder.MasterBuilder(master_spec, hyperparam_config)

      target = spec_pb2.TrainTarget()
      target.name = 'testTraining-all'
      train = builder.add_training_from_config(target)
      with self.test_session() as sess:
        logging.info('Initializing')
        sess.run(tf.global_variables_initializer())

        # Run one iteration of training and verify nothing crashes.
        logging.info('Training')
        sess.run(train['run'], feed_dict={train['input_batch']: reader_strings})
开发者ID:knathanieltucker,项目名称:models,代码行数:25,代码来源:graph_builder_test.py

示例10: add_saver

 def add_saver(self):
   """Adds a Saver for all variables in the graph."""
   logging.info('Generating op to save variables:\n\t%s',
                '\n\t'.join([x.name for x in tf.global_variables()]))
   self.saver = tf.train.Saver(
       var_list=[x for x in tf.global_variables()],
       write_version=saver_pb2.SaverDef.V1)
开发者ID:ALISCIFP,项目名称:models,代码行数:7,代码来源:graph_builder.py

示例11: _restore_from_checkpoint

def _restore_from_checkpoint(session, graph, checkpoint_path, saver=None):
  logging.info('Loading model from checkpoint: %s.', checkpoint_path)
  saver = saver or _make_saver(graph)
  if saver:
    saver.restore(session, checkpoint_path)
  else:
    logging.info('No variables found in graph, not creating Saver() object.')
开发者ID:HKUST-SING,项目名称:tensorflow,代码行数:7,代码来源:graph_actions.py

示例12: _get_model_dir

def _get_model_dir(tf_config, model_dir):
  """Returns `model_dir` based user provided `tf_config` or `model_dir`."""
  # pylint: disable=g-explicit-bool-comparison

  # Empty string is treated as False in Python condition check, which triggers
  # some confusing error messages. For example, 'a or b' returns None if a is ''
  # and b is None. `None` is allowed for model_dir but '' is not allowed. Here,
  # explicitly check empty string to provide clear error message.
  if model_dir == '':
    raise ValueError('model_dir should be non-empty.')

  model_dir_in_tf_config = tf_config.get('model_dir')
  if model_dir_in_tf_config == '':
    raise ValueError('model_dir in TF_CONFIG should be non-empty.')

  if model_dir_in_tf_config:
    if model_dir and model_dir_in_tf_config != model_dir:
      raise ValueError(
          '`model_dir` provided in RunConfig construct, if set, '
          'must have the same value as the model_dir in TF_CONFIG. '
          'model_dir: {}\nTF_CONFIG["model_dir"]: {}.\n'.format(
              model_dir, model_dir_in_tf_config))

    logging.info('Using model_dir in TF_CONFIG: %s', model_dir_in_tf_config)

  return model_dir or model_dir_in_tf_config
开发者ID:LiuCKind,项目名称:tensorflow,代码行数:26,代码来源:run_config.py

示例13: _initialize_local

  def _initialize_local(self, num_gpus_per_worker):
    """Initialize internal devices for local training."""
    self._worker_device = "/job:localhost"
    # Define compute devices which is a list of device strings and one for each
    # replica. When there are GPUs, replicate operations on these GPUs.
    # Otherwise, place operations on CPU.
    if num_gpus_per_worker > 0:
      self._compute_devices = list(
          map("/device:GPU:{}".format, range(num_gpus_per_worker)))
    else:
      self._compute_devices = [_LOCAL_CPU]

    self._compute_devices = list(
        map(device_util.resolve, self._compute_devices))
    self._canonical_compute_device_set = set(self._compute_devices)

    # If there is only one GPU, put everything on that GPU. Otherwise, place
    # variables on CPU.
    if num_gpus_per_worker == 1:
      assert len(list(self._compute_devices)) == 1
      self._variable_device = _LOCAL_GPU_0
      self._parameter_devices = [_LOCAL_GPU_0]
    else:
      self._variable_device = _LOCAL_CPU
      self._parameter_devices = [_LOCAL_CPU]

    self._is_chief = True
    self._cluster_spec = None
    self._task_type = None
    self._task_id = None

    logging.info(
        "ParameterServerStrategy with compute_devices = %r, "
        "variable_device = %r", self._compute_devices, self._variable_device)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:34,代码来源:parameter_server_strategy.py

示例14: _restore_checkpoint

  def _restore_checkpoint(self,
                          master,
                          saver=None,
                          checkpoint_dir=None,
                          checkpoint_filename_with_path=None,
                          wait_for_checkpoint=False,
                          max_wait_secs=7200,
                          config=None):
    """Creates a `Session`, and tries to restore a checkpoint.


    Args:
      master: `String` representation of the TensorFlow master to use.
      saver: A `Saver` object used to restore a model.
      checkpoint_dir: Path to the checkpoint files. The latest checkpoint in the
        dir will be used to restore.
      checkpoint_filename_with_path: Full file name path to the checkpoint file.
      wait_for_checkpoint: Whether to wait for checkpoint to become available.
      max_wait_secs: Maximum time to wait for checkpoints to become available.
      config: Optional `ConfigProto` proto used to configure the session.

    Returns:
      A pair (sess, is_restored) where 'is_restored' is `True` if
      the session could be restored, `False` otherwise.

    Raises:
      ValueError: If both checkpoint_dir and checkpoint_filename_with_path are
        set.
    """
    self._target = master
    sess = session.Session(self._target, graph=self._graph, config=config)

    if checkpoint_dir and checkpoint_filename_with_path:
      raise ValueError("Can not provide both checkpoint_dir and "
                       "checkpoint_filename_with_path.")
    # If either saver or checkpoint_* is not specified, cannot restore. Just
    # return.
    if not saver or not (checkpoint_dir or checkpoint_filename_with_path):
      return sess, False

    if checkpoint_filename_with_path:
      saver.restore(sess, checkpoint_filename_with_path)
      return sess, True

    # Waits up until max_wait_secs for checkpoint to become available.
    wait_time = 0
    ckpt = checkpoint_management.get_checkpoint_state(checkpoint_dir)
    while not ckpt or not ckpt.model_checkpoint_path:
      if wait_for_checkpoint and wait_time < max_wait_secs:
        logging.info("Waiting for checkpoint to be available.")
        time.sleep(self._recovery_wait_secs)
        wait_time += self._recovery_wait_secs
        ckpt = checkpoint_management.get_checkpoint_state(checkpoint_dir)
      else:
        return sess, False

    # Loads the checkpoint.
    saver.restore(sess, ckpt.model_checkpoint_path)
    saver.recover_last_checkpoints(ckpt.all_model_checkpoint_paths)
    return sess, True
开发者ID:AnishShah,项目名称:tensorflow,代码行数:60,代码来源:session_manager.py

示例15: __init__

  def __init__(self,
               checkpoint_dir,
               save_secs=None,
               save_steps=None,
               saver=None,
               checkpoint_basename="model.ckpt",
               scaffold=None):
    """Initialize CheckpointSaverHook monitor.

    Args:
      checkpoint_dir: `str`, base directory for the checkpoint files.
      save_secs: `int`, save every N secs.
      save_steps: `int`, save every N steps.
      saver: `Saver` object, used for saving.
      checkpoint_basename: `str`, base name for the checkpoint files.
      scaffold: `Scaffold`, use to get saver object.

    Raises:
      ValueError: One of `save_steps` or `save_secs` should be set.
    """
    logging.info("Create CheckpointSaverHook.")
    self._saver = saver
    self._checkpoint_dir = checkpoint_dir
    self._summary_writer = SummaryWriterCache.get(checkpoint_dir)
    self._save_path = os.path.join(checkpoint_dir, checkpoint_basename)
    self._scaffold = scaffold
    self._save_secs = save_secs
    self._save_steps = save_steps
    self._last_saved_time = None
    self._last_saved_step = None

    if save_steps is None and save_secs is None:
      raise ValueError("Either save_steps or save_secs should be provided")
    if (save_steps is not None) and (save_secs is not None):
      raise ValueError("Can not provide both save_steps and save_secs.")
开发者ID:MostafaGazar,项目名称:tensorflow,代码行数:35,代码来源:basic_session_run_hooks.py


注:本文中的tensorflow.python.platform.tf_logging.info函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。