当前位置: 首页>>代码示例>>Python>>正文


Python tf_logging.debug函数代码示例

本文整理汇总了Python中tensorflow.python.platform.tf_logging.debug函数的典型用法代码示例。如果您正苦于以下问题:Python debug函数的具体用法?Python debug怎么用?Python debug使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了debug函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _connect_ops

  def _connect_ops(self, info):
    """Connect the previously copied ops."""
    for op in info.sgv.ops:
      logging.debug("Finalizing op: %s", op.name)
      op_ = info.transformed_ops[op]

      # pylint: disable=protected-access
      if op_.inputs:
        raise ValueError("The newly transformed op should not have "
                         "any inputs yet: {}".format(op_.name))
      inputs_ = [self._transformed_t(info, t) for t in op.inputs]
      for t in inputs_:
        op_._add_input(t)

      # Finalize original op.
      if op._original_op:
        original_op = info.transform_original_op_handler(info, op._original_op)
        if original_op is None:
          logging.debug("Could not find original op for: %s", op_.name)
        else:
          op_._original_op = original_op

      # Finalize control inputs:
      control_inputs_ = [self.transform_control_input_handler(info, ci)
                         for ci in op.control_inputs]
      control_inputs_ = [ci for ci in control_inputs_ if ci is not None]
      reroute.add_control_inputs(op_, control_inputs_)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:27,代码来源:transform.py

示例2: transform

  def transform(self, feature_column):
    """Returns a Tensor which represents given feature_column.

    Args:
      feature_column: An instance of FeatureColumn.

    Returns:
      A Tensor which represents given feature_column. It may create a new Tensor
      or re-use an existing one.

    Raises:
      ValueError: if FeatureColumn cannot be handled by this Transformer.
    """
    logging.debug('Transforming feature_column %s', feature_column)
    if feature_column in self._columns_to_tensors:
      # Feature_column is already transformed.
      return self._columns_to_tensors[feature_column]

    feature_column.insert_transformed_feature(self._columns_to_tensors)

    if feature_column not in self._columns_to_tensors:
      raise ValueError('Column {} is not supported.'.format(
          feature_column.name))

    return self._columns_to_tensors[feature_column]
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:25,代码来源:feature_column_ops.py

示例3: _transformed_t

  def _transformed_t(self, info, t, consumer_op):
    """Return tre transformed tensor of `t`."""
    if t in info.transformed_ts:
      # If op is in the subgraph, just return its transformed counterpart.
      return info.transformed_ts[t]

    if t in info.sgv_inputs_set:
      # `t` is an input of the subgraph.
      return self.transform_external_input_handler(info, t)
    elif t.op in info.ops:
      # `t` is an internal tensor but is not transformed yet because it
      # belongs to a graph cycle.
      logging.debug("Cyclic tensor: t.name = %s", t.name)
      # Try to find an existing tensor we can use for now,
      # otherwise create one. We'll rewire this later.
      if consumer_op.type == "Merge":
        first_input = consumer_op.inputs[0]
        tmp_t_ = self._transformed_t(info, first_input, consumer_op)
      elif t.op.type == "Enter":
        enter_input = t.op.inputs[0]
        tmp_t_ = self._transformed_t(info, enter_input, consumer_op)
      else:
        with info.graph_.as_default():
          tmp_t_ = util.make_placeholder_from_tensor(t, scope=info.scope_,
                                                     prefix="geph_tmp")
        logging.debug("Created temporary placeholder: %s.", tmp_t_.name)
      # Register as temporary and return.
      info.tmp_cyclic_ts.append((t, tmp_t_, consumer_op))
      return tmp_t_
    else:
      # `t` is a hidden input of the subgraph.
      return self.transform_external_hidden_input_handler(info, t)
开发者ID:bikong2,项目名称:tensorflow,代码行数:32,代码来源:transform.py

示例4: evaluate_and_export

    def evaluate_and_export(self):
      """Evaluate and (maybe) export the current model.

      Returns:
        Evaluation results. Returns `None` if current round of evaluation is
        skipped.

      Raises:
        RuntimeError: for any unexpected internal error.
        TypeError: if evaluation result has wrong type.
      """
      latest_ckpt_path = self._estimator.latest_checkpoint()
      if not latest_ckpt_path:
        self._log_err_msg('Estimator is not trained yet. Will start an '
                          'evaluation when a checkpoint is ready.')
        return None

      if latest_ckpt_path == self._previous_ckpt_path:
        self._log_err_msg(
            'No new checkpoint ready for evaluation. Skip the current '
            'evaluation pass as evaluation results are expected to be same '
            'for the same checkpoint.')
        return None
      eval_result = self._estimator.evaluate(
          input_fn=self._eval_spec.input_fn,
          steps=self._eval_spec.steps,
          name=self._eval_spec.name,
          checkpoint_path=latest_ckpt_path,
          hooks=self._eval_spec.hooks)

      if not eval_result:
        raise RuntimeError(
            'Internal error: `Estimator.evaluate` should never return empty '
            'result.')
      if not isinstance(eval_result, dict):
        raise TypeError(
            '`Estimator.evaluate` should return dict. Given {}.'.format(
                type(eval_result)))
      if ops.GraphKeys.GLOBAL_STEP not in eval_result:
        raise RuntimeError(
            'Internal error: `Estimator.evaluate` result should have '
            '`global_step` in result. Given {}'.format(eval_result))

      is_the_final_export = (eval_result[ops.GraphKeys.GLOBAL_STEP] >=
                             self._max_training_steps
                             if self._max_training_steps else False)
      self._export_eval_result(eval_result, latest_ckpt_path,
                               is_the_final_export)

      if is_the_final_export:
        logging.debug('Calling exporter with the `is_the_final_export=True`.')
        self._is_final_export_triggered = True

      self._last_warning_time = 0
      self._previous_ckpt_path = latest_ckpt_path
      return eval_result
开发者ID:ilya-edrenkin,项目名称:tensorflow,代码行数:56,代码来源:training.py

示例5: _SetPath

  def _SetPath(self, path):
    old_path = self._path
    if old_path and not gcs.IsGCSPath(old_path):
      # We're done with the path, so store its size.
      size = io_wrapper.Size(old_path)
      logging.debug('Setting latest size of %s to %d', old_path, size)
      self._finalized_sizes[old_path] = size

    self._path = path
    self._loader = self._loader_factory(path)
开发者ID:0ruben,项目名称:tensorflow,代码行数:10,代码来源:directory_watcher.py

示例6: __init__

 def __init__(self, file_path):
   if file_path is None:
     raise ValueError('A file path is required')
   file_path = resource_loader.readahead_file_path(file_path)
   logging.debug('Opening a record reader pointing at %s', file_path)
   self._reader = pywrap_tensorflow.PyRecordReader_New(
       compat.as_bytes(file_path), 0)
   # Store it for logging purposes.
   self._file_path = file_path
   if not self._reader:
     raise IOError('Failed to open a record reader pointing to %s' % file_path)
开发者ID:0ruben,项目名称:tensorflow,代码行数:11,代码来源:event_file_loader.py

示例7: _input_thread_fn_for_loading

  def _input_thread_fn_for_loading(self, session, enqueue_ops, iterations):
    count = 0
    while True:
      signal = self._signal_queue.get()
      if signal == _SIGNAL.STOP:
        logging.info('Stop Infeed input thread.')
        return

      for i in range(iterations):
        logging.debug('InfeedEnqueue data for iteration (%d, %d)', count, i)
        session.run(enqueue_ops)
      count += 1
开发者ID:awisbith,项目名称:tensorflow,代码行数:12,代码来源:tpu_estimator.py

示例8: run

 def run(self):
   # Don't fetch logs or adjust timing: just ping the watchdog.
   #
   # If we hit an exception, reset our session as it is likely broken.
   while self._running:
     try:
       self._worker_manager.ping(request=None)
       time.sleep(self.ping_interval)
     except errors.OpError as e:
       # Catch any TF errors that occur so we don't stop sending heartbeats
       logging.debug('Caught error while sending heartbeat: %s', e)
       self._reset_manager()
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:12,代码来源:session_support.py

示例9: Load

 def Load(self):
   # Create a temp file to hold the contents that we haven't seen yet.
   with tempfile.NamedTemporaryFile(prefix='tf-gcs-') as temp_file:
     name = temp_file.name
     logging.debug('Temp file created at %s', name)
     gcs.CopyContents(self._gcs_path, self._gcs_offset, temp_file)
     reader = pywrap_tensorflow.PyRecordReader_New(compat.as_bytes(name), 0)
     while reader.GetNext():
       event = event_pb2.Event()
       event.ParseFromString(reader.record())
       yield event
     logging.debug('No more events in %s', name)
     self._gcs_offset += reader.offset()
开发者ID:0-T-0,项目名称:tensorflow,代码行数:13,代码来源:gcs_file_loader.py

示例10: every_n_step_end

  def every_n_step_end(self, step, outputs):
    super(ValidationMonitor, self).every_n_step_end(step, outputs)
    # TODO(mdan): The use of step below is probably misleading.
    # The code should probably use the step from the checkpoint, because
    # that's what is being evaluated.
    if self._estimator is None:
      raise ValueError("Missing call to set_estimator.")
    # Check that we are not running evaluation on the same checkpoint.
    latest_path = saver_lib.latest_checkpoint(self._estimator.model_dir)
    if latest_path is None:
      logging.debug("Skipping evaluation since model has not been saved yet "
                    "at step %d.", step)
      return False
    if latest_path is not None and latest_path == self._latest_path:
      logging.debug("Skipping evaluation due to same checkpoint %s for step %d "
                    "as for step %d.", latest_path, step,
                    self._latest_path_step)
      return False
    self._latest_path = latest_path
    self._latest_path_step = step

    # Run evaluation and log it.
    validation_outputs = self._estimator.evaluate(
        x=self.x, y=self.y, input_fn=self.input_fn, batch_size=self.batch_size,
        steps=self.eval_steps, metrics=self.metrics, hooks=self.hooks,
        name=self.name)
    stats = []
    for name in validation_outputs:
      stats.append("%s = %s" % (name, str(validation_outputs[name])))
    logging.info("Validation (step %d): %s", step, ", ".join(stats))

    # Early stopping logic.
    if self.early_stopping_rounds is not None:
      if self.early_stopping_metric not in validation_outputs:
        raise ValueError("Metric %s missing from outputs %s." % (
            self.early_stopping_metric, set(validation_outputs.keys())))
      current_value = validation_outputs[self.early_stopping_metric]
      if (self._best_value is None or (self.early_stopping_metric_minimize and
                                       (current_value < self._best_value)) or
          (not self.early_stopping_metric_minimize and
           (current_value > self._best_value))):
        self._best_value = current_value
        self._best_value_step = step
      stop_now = (step - self._best_value_step >= self.early_stopping_rounds)
      if stop_now:
        logging.info("Stopping. Best step: {} with {} = {}."
                     .format(self._best_value_step,
                             self.early_stopping_metric, self._best_value))
        self._early_stopped = True
        return True
    return False
开发者ID:Immexxx,项目名称:tensorflow,代码行数:51,代码来源:monitors.py

示例11: Load

  def Load(self):
    """Loads all new values from disk.

    Calling Load multiple times in a row will not 'drop' events as long as the
    return value is not iterated over.

    Yields:
      All values that were written to disk that have not been yielded yet.
    """
    while self._reader.GetNext():
      event = event_pb2.Event()
      event.ParseFromString(self._reader.record())
      yield event
    logging.debug('No more events in %s', self._file_path)
开发者ID:0ruben,项目名称:tensorflow,代码行数:14,代码来源:event_file_loader.py

示例12: copy_op_handler

def copy_op_handler(info, op, copy_shape=True):
  """Copy a `tf.Operation`.

  Args:
    info: Transform._TmpInfo instance.
    op: the `tf.Operation` to be copied.
    copy_shape: also copy the shape of the tensor
  Returns:
    A `(op, op_outputs)` tuple containing the transformed op and its outputs.
  """
  # pylint: disable=protected-access

  # Clone the node def:
  node_def_ = deepcopy(op._node_def)

  # Transform name:
  name_ = info.new_name(op.name)
  name_ = info.graph_.unique_name(name_)
  node_def_.name = name_

  # Copy the other inputs needed for initialization
  output_types_ = op._output_types[:]
  input_types_ = op._input_types[:]

  # Make a copy of the op_def too.
  # Its unique to every _type_ of Operation.
  op_def_ = deepcopy(op._op_def)

  # Initialize a new Operation instance
  op_ = tf_ops.Operation(node_def_, info.graph_, [], output_types_,
                         [], input_types_, None, op_def_)

  # copy the shape over
  if copy_shape:
    for t, t_ in zip(op.outputs, op_.outputs):
      t_.set_shape(t.get_shape())

  # Finalize original op.
  if op._original_op:
    original_op = info.transform_original_op_handler(info, op._original_op)
    if original_op is None:
      logging.debug("Could not find original op of: %s", op_.name)
    else:
      op_._original_op = original_op

  # Add op to the graph
  info.graph_._add_op(op_)

  return op_, op_.outputs
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:49,代码来源:transform.py

示例13: evaluate_and_export

    def evaluate_and_export(self):
      """Evaluate and (maybe) export the current model.

      Returns:
        A tuple of `EvalResult` instance and the export results.

      Raises:
        RuntimeError: for any unexpected internal error.
        TypeError: if evaluation result has wrong type.
      """
      latest_ckpt_path = self._estimator.latest_checkpoint()
      if not latest_ckpt_path:
        self._log_err_msg('Estimator is not trained yet. Will start an '
                          'evaluation when a checkpoint is ready.')
        return _EvalResult(status=_EvalStatus.MISSING_CHECKPOINT), []

      if latest_ckpt_path == self._previous_ckpt_path:
        self._log_err_msg(
            'No new checkpoint ready for evaluation. Skip the current '
            'evaluation pass as evaluation results are expected to be same '
            'for the same checkpoint.')
        return _EvalResult(status=_EvalStatus.NO_NEW_CHECKPOINT), []

      metrics = self._estimator.evaluate(
          input_fn=self._eval_spec.input_fn,
          steps=self._eval_spec.steps,
          name=self._eval_spec.name,
          checkpoint_path=latest_ckpt_path,
          hooks=self._eval_spec.hooks)

      # _EvalResult validates the metrics.
      eval_result = _EvalResult(
          status=_EvalStatus.EVALUATED,
          metrics=metrics,
          checkpoint_path=latest_ckpt_path)

      is_the_final_export = (
          eval_result.metrics[ops.GraphKeys.GLOBAL_STEP] >=
          self._max_training_steps if self._max_training_steps else False)
      export_results = self._export_eval_result(eval_result,
                                                is_the_final_export)

      if is_the_final_export:
        logging.debug('Calling exporter with the `is_the_final_export=True`.')
        self._is_final_export_triggered = True

      self._last_warning_time = 0
      self._previous_ckpt_path = latest_ckpt_path
      return eval_result, export_results
开发者ID:AnishShah,项目名称:tensorflow,代码行数:49,代码来源:training.py

示例14: ping

  def ping(self, request=None, timeout_in_ms=5000):
    """Ping all workers, returning the parsed status results."""
    if request is None:
      request = event_pb2.WorkerHeartbeatRequest()

    options = config_pb2.RunOptions(timeout_in_ms=timeout_in_ms)
    results = self._session.run(
        self._ops,
        feed_dict={self._request_placeholder: request.SerializeToString()},
        options=options)
    parsed_results = [
        event_pb2.WorkerHeartbeatResponse.FromString(res_pb)
        for res_pb in results
    ]
    logging.debug('Ping results: %s', parsed_results)
    return parsed_results
开发者ID:AnishShah,项目名称:tensorflow,代码行数:16,代码来源:session_support.py

示例15: _copy_ops

  def _copy_ops(self, info):
    """Copy ops without connecting them."""
    for op in info.sgv.ops:
      logging.debug("Copying op: %s", op.name)
      # TODO(fkp): return a subgraph?
      op_, op_outputs_ = self.transform_op_handler(info, op)
      if op is op_:
        raise ValueError("In-place tranformation not allowed.")

      # Process op.
      info.transformed_ops[op] = op_
      self.assign_collections_handler(info, op, op_)

      # Process output tensors.
      for op_output, op_output_ in zip(op.outputs, op_outputs_):
        info.transformed_ts[op_output] = op_output_
        self.assign_collections_handler(info, op_output, op_output_)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:17,代码来源:transform.py


注:本文中的tensorflow.python.platform.tf_logging.debug函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。