本文整理汇总了Python中tensorflow.python.platform.test.test_src_dir_path函数的典型用法代码示例。如果您正苦于以下问题:Python test_src_dir_path函数的具体用法?Python test_src_dir_path怎么用?Python test_src_dir_path使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了test_src_dir_path函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: setUp
def setUp(self):
ops.reset_default_graph()
dim = 1
num = 3
with ops.name_scope('some_scope'):
# Basically from 0 to dim*num-1.
flat_data = math_ops.linspace(0.0, dim * num - 1, dim * num)
bias = variables.Variable(
array_ops.reshape(flat_data, (num, dim)), name='bias')
save = saver.Saver([bias])
with self.test_session() as sess:
variables.global_variables_initializer().run()
self.bundle_file = os.path.join(test.get_temp_dir(), 'bias_checkpoint')
save.save(sess, self.bundle_file)
self.new_class_vocab_file = os.path.join(
test.test_src_dir_path(_TESTDATA_PATH), 'keyword_new.txt')
self.old_class_vocab_file = os.path.join(
test.test_src_dir_path(_TESTDATA_PATH), 'keyword.txt')
self.init_val = 42
def _init_val_initializer(shape, dtype=None, partition_info=None):
del dtype, partition_info # Unused by this unit-testing initializer.
return array_ops.tile(
constant_op.constant([[self.init_val]], dtype=dtypes.float32), shape)
self.initializer = _init_val_initializer
示例2: testMaybeSessionBundleDir
def testMaybeSessionBundleDir(self):
base_path = test.test_src_dir_path(SESSION_BUNDLE_PATH)
self.assertTrue(session_bundle.maybe_session_bundle_dir(base_path))
base_path = test.test_src_dir_path(SAVED_MODEL_PATH)
self.assertFalse(session_bundle.maybe_session_bundle_dir(base_path))
base_path = "complete_garbage"
self.assertFalse(session_bundle.maybe_session_bundle_dir(base_path))
示例3: testMaybeSavedModelDir
def testMaybeSavedModelDir(self):
base_path = test.test_src_dir_path("/python/saved_model")
self.assertFalse(loader.maybe_saved_model_directory(base_path))
base_path = test.test_src_dir_path(SAVED_MODEL_PATH)
self.assertTrue(loader.maybe_saved_model_directory(base_path))
base_path = "complete_garbage"
self.assertFalse(loader.maybe_saved_model_directory(base_path))
示例4: testRunCommandWithDebuggerEnabled
def testRunCommandWithDebuggerEnabled(self):
self.parser = saved_model_cli.create_parser()
base_path = test.test_src_dir_path(SAVED_MODEL_PATH)
x = np.array([[1], [2]])
x_notused = np.zeros((6, 3))
input_path = os.path.join(test.get_temp_dir(),
'testRunCommandNewOutdir_inputs.npz')
output_dir = os.path.join(test.get_temp_dir(), 'new_dir')
if os.path.isdir(output_dir):
shutil.rmtree(output_dir)
np.savez(input_path, x0=x, x1=x_notused)
args = self.parser.parse_args([
'run', '--dir', base_path, '--tag_set', 'serve', '--signature_def',
'serving_default', '--inputs', 'x=' + input_path + '[x0]', '--outdir',
output_dir, '--tf_debug'
])
def fake_wrapper_session(sess):
return sess
with test.mock.patch.object(local_cli_wrapper,
'LocalCLIDebugWrapperSession',
side_effect=fake_wrapper_session,
autospec=True) as fake:
saved_model_cli.run(args)
fake.assert_called_with(test.mock.ANY)
y_actual = np.load(os.path.join(output_dir, 'y.npy'))
y_expected = np.array([[2.5], [3.0]])
self.assertAllClose(y_expected, y_actual)
示例5: testEval
def testEval(self):
if not trt_convert.is_tensorrt_enabled():
return
model_dir = test.test_src_dir_path('contrib/tensorrt/test/testdata')
accuracy_tf_native = self._Run(
is_training=False,
use_trt=False,
batch_size=128,
num_epochs=None,
model_dir=model_dir)['accuracy']
logging.info('accuracy_tf_native: %f', accuracy_tf_native)
self.assertAllClose(accuracy_tf_native, 0.9662)
if trt_convert.get_linked_tensorrt_version()[0] < 5:
return
accuracy_tf_trt = self._Run(
is_training=False,
use_trt=True,
batch_size=128,
num_epochs=None,
model_dir=model_dir)['accuracy']
logging.info('accuracy_tf_trt: %f', accuracy_tf_trt)
self.assertAllClose(accuracy_tf_trt, 0.9677)
示例6: testBasic
def testBasic(self):
base_path = test.test_src_dir_path(SESSION_BUNDLE_PATH)
ops.reset_default_graph()
sess, meta_graph_def = session_bundle.load_session_bundle_from_path(
base_path,
target="",
config=config_pb2.ConfigProto(device_count={"CPU": 2}))
self.assertTrue(sess)
asset_path = os.path.join(base_path, constants.ASSETS_DIRECTORY)
with sess.as_default():
path1, path2 = sess.run(["filename1:0", "filename2:0"])
self.assertEqual(
compat.as_bytes(os.path.join(asset_path, "hello1.txt")), path1)
self.assertEqual(
compat.as_bytes(os.path.join(asset_path, "hello2.txt")), path2)
collection_def = meta_graph_def.collection_def
signatures_any = collection_def[constants.SIGNATURES_KEY].any_list.value
self.assertEquals(len(signatures_any), 1)
signatures = manifest_pb2.Signatures()
signatures_any[0].Unpack(signatures)
self._checkRegressionSignature(signatures, sess)
self._checkNamedSignatures(signatures, sess)
示例7: testShowCommandErrorNoTagSet
def testShowCommandErrorNoTagSet(self):
base_path = test.test_src_dir_path(SAVED_MODEL_PATH)
self.parser = saved_model_cli.create_parser()
args = self.parser.parse_args(
['show', '--dir', base_path, '--tag_set', 'badtagset'])
with self.assertRaises(RuntimeError):
saved_model_cli.show(args)
示例8: testEval
def testEval(self):
if not is_tensorrt_enabled():
return
model_dir = test.test_src_dir_path('python/compiler/tensorrt/test/testdata')
accuracy_tf_native = self._Run(
is_training=False,
use_trt=False,
batch_size=128,
num_epochs=None,
model_dir=model_dir)['accuracy']
logging.info('accuracy_tf_native: %f', accuracy_tf_native)
self.assertAllClose(0.9662, accuracy_tf_native, rtol=3e-3, atol=3e-3)
if get_linked_tensorrt_version()[0] < 5:
return
accuracy_tf_trt = self._Run(
is_training=False,
use_trt=True,
batch_size=128,
num_epochs=None,
model_dir=model_dir)['accuracy']
logging.info('accuracy_tf_trt: %f', accuracy_tf_trt)
self.assertAllClose(0.9675, accuracy_tf_trt, rtol=1e-3, atol=1e-3)
示例9: setUpClass
def setUpClass(cls):
gpu_memory_fraction_opt = (
"--gpu_memory_fraction=%f" % cls.PER_PROC_GPU_MEMORY_FRACTION)
worker_port = portpicker.pick_unused_port()
cluster_spec = "worker|localhost:%d" % worker_port
tf_logging.info("cluster_spec: %s", cluster_spec)
server_bin = test.test_src_dir_path("python/debug/grpc_tensorflow_server")
cls.server_target = "grpc://localhost:%d" % worker_port
cls.server_procs = {}
cls.server_procs["worker"] = subprocess.Popen(
[
server_bin,
"--cluster_spec=%s" % cluster_spec,
"--job_name=worker",
"--task_id=0",
gpu_memory_fraction_opt,
],
stdout=sys.stdout,
stderr=sys.stderr)
# Start debug server in-process, on separate thread.
(cls.debug_server_port, cls.debug_server_url, _, cls.debug_server_thread,
cls.debug_server
) = grpc_debug_test_server.start_server_on_separate_thread(
dump_to_filesystem=False)
tf_logging.info("debug server url: %s", cls.debug_server_url)
cls.session_config = config_pb2.ConfigProto(
gpu_options=config_pb2.GPUOptions(
per_process_gpu_memory_fraction=cls.PER_PROC_GPU_MEMORY_FRACTION))
示例10: testRunCommandInputNotGivenError
def testRunCommandInputNotGivenError(self):
self.parser = saved_model_cli.create_parser()
base_path = test.test_src_dir_path(SAVED_MODEL_PATH)
args = self.parser.parse_args([
'run', '--dir', base_path, '--tag_set', 'serve', '--signature_def',
'serving_default'
])
with self.assertRaises(AttributeError):
saved_model_cli.run(args)
示例11: testRunCommandInvalidInputKeyError
def testRunCommandInvalidInputKeyError(self):
self.parser = saved_model_cli.create_parser()
base_path = test.test_src_dir_path(SAVED_MODEL_PATH)
args = self.parser.parse_args([
'run', '--dir', base_path, '--tag_set', 'serve', '--signature_def',
'regress_x2_to_y3', '--input_exprs', 'x2=np.ones((3,1))'
])
with self.assertRaises(ValueError):
saved_model_cli.run(args)
示例12: testBadPath
def testBadPath(self):
base_path = test.test_src_dir_path("/no/such/a/dir")
ops.reset_default_graph()
with self.assertRaises(RuntimeError) as cm:
_, _ = session_bundle.load_session_bundle_from_path(
base_path,
target="local",
config=config_pb2.ConfigProto(device_count={"CPU": 2}))
self.assertTrue("Expected meta graph file missing" in str(cm.exception))
示例13: testShowCommandTags
def testShowCommandTags(self):
base_path = test.test_src_dir_path(SAVED_MODEL_PATH)
self.parser = saved_model_cli.create_parser()
args = self.parser.parse_args(['show', '--dir', base_path])
with captured_output() as (out, err):
saved_model_cli.show(args)
output = out.getvalue().strip()
exp_out = 'The given SavedModel contains the following tag-sets:\nserve'
self.assertMultiLineEqual(output, exp_out)
self.assertEqual(err.getvalue().strip(), '')
示例14: setUp
def setUp(self):
self.bundle_file = os.path.join(
test.test_src_dir_path(_TESTDATA_PATH), 'bundle_checkpoint')
self.new_feature_vocab_file = os.path.join(
test.test_src_dir_path(_TESTDATA_PATH), 'bundle_checkpoint_vocab.txt')
self.old_feature_vocab_file = os.path.join(
test.test_src_dir_path(_TESTDATA_PATH),
'bundle_checkpoint_vocab_with_oov.txt')
self.new_class_vocab_file = os.path.join(
test.test_src_dir_path(_TESTDATA_PATH), 'keyword_new.txt')
self.old_class_vocab_file = os.path.join(
test.test_src_dir_path(_TESTDATA_PATH), 'keyword.txt')
self.init_val = 42
def _init_val_initializer(shape, dtype=None, partition_info=None):
del dtype, partition_info # Unused by this unit-testing initializer.
return array_ops.tile(
constant_op.constant([[self.init_val]], dtype=dtypes.float32), shape)
self.initializer = _init_val_initializer
示例15: testConvertSignaturesToSignatureDefs
def testConvertSignaturesToSignatureDefs(self):
base_path = test.test_src_dir_path(SESSION_BUNDLE_PATH)
meta_graph_filename = os.path.join(base_path,
constants.META_GRAPH_DEF_FILENAME)
metagraph_def = meta_graph.read_meta_graph_file(meta_graph_filename)
default_signature_def, named_signature_def = (
bundle_shim._convert_signatures_to_signature_defs(metagraph_def))
self.assertEqual(default_signature_def.method_name,
signature_constants.REGRESS_METHOD_NAME)
self.assertEqual(len(default_signature_def.inputs), 1)
self.assertEqual(len(default_signature_def.outputs), 1)
self.assertProtoEquals(
default_signature_def.inputs[signature_constants.REGRESS_INPUTS],
meta_graph_pb2.TensorInfo(name="tf_example:0"))
self.assertProtoEquals(
default_signature_def.outputs[signature_constants.REGRESS_OUTPUTS],
meta_graph_pb2.TensorInfo(name="Identity:0"))
self.assertEqual(named_signature_def.method_name,
signature_constants.PREDICT_METHOD_NAME)
self.assertEqual(len(named_signature_def.inputs), 1)
self.assertEqual(len(named_signature_def.outputs), 1)
self.assertProtoEquals(
named_signature_def.inputs["x"], meta_graph_pb2.TensorInfo(name="x:0"))
self.assertProtoEquals(
named_signature_def.outputs["y"], meta_graph_pb2.TensorInfo(name="y:0"))
# Now try default signature only
collection_def = metagraph_def.collection_def
signatures_proto = manifest_pb2.Signatures()
signatures = collection_def[constants.SIGNATURES_KEY].any_list.value[0]
signatures.Unpack(signatures_proto)
named_only_signatures_proto = manifest_pb2.Signatures()
named_only_signatures_proto.CopyFrom(signatures_proto)
default_only_signatures_proto = manifest_pb2.Signatures()
default_only_signatures_proto.CopyFrom(signatures_proto)
default_only_signatures_proto.named_signatures.clear()
default_only_signatures_proto.ClearField("named_signatures")
metagraph_def.collection_def[constants.SIGNATURES_KEY].any_list.value[
0].Pack(default_only_signatures_proto)
default_signature_def, named_signature_def = (
bundle_shim._convert_signatures_to_signature_defs(metagraph_def))
self.assertEqual(default_signature_def.method_name,
signature_constants.REGRESS_METHOD_NAME)
self.assertEqual(named_signature_def, None)
named_only_signatures_proto.ClearField("default_signature")
metagraph_def.collection_def[constants.SIGNATURES_KEY].any_list.value[
0].Pack(named_only_signatures_proto)
default_signature_def, named_signature_def = (
bundle_shim._convert_signatures_to_signature_defs(metagraph_def))
self.assertEqual(named_signature_def.method_name,
signature_constants.PREDICT_METHOD_NAME)
self.assertEqual(default_signature_def, None)