当前位置: 首页>>代码示例>>Python>>正文


Python variables.trainable_variables函数代码示例

本文整理汇总了Python中tensorflow.python.ops.variables.trainable_variables函数的典型用法代码示例。如果您正苦于以下问题:Python trainable_variables函数的具体用法?Python trainable_variables怎么用?Python trainable_variables使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了trainable_variables函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testFunctionalConv3DTransposeNoReuse

 def testFunctionalConv3DTransposeNoReuse(self):
   depth, height, width = 5, 7, 9
   volumes = random_ops.random_uniform((5, depth, height, width, 32), seed=1)
   conv_layers.conv3d_transpose(volumes, 4, [3, 3, 3])
   self.assertEqual(len(variables.trainable_variables()), 2)
   conv_layers.conv3d_transpose(volumes, 4, [3, 3, 3])
   self.assertEqual(len(variables.trainable_variables()), 4)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:7,代码来源:convolutional_test.py

示例2: testTensorLearningRateAndMomentum

  def testTensorLearningRateAndMomentum(self):
    for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
      with self.cached_session():
        var0 = variables.Variable([1.0, 2.0], dtype=dtype)
        var1 = variables.Variable([3.0, 4.0], dtype=dtype)
        grads0 = constant_op.constant([0.1, 0.1], dtype=dtype)
        grads1 = constant_op.constant([0.01, 0.01], dtype=dtype)
        mom_opt = momentum_lib.MomentumOptimizer(
            learning_rate=constant_op.constant(2.0),
            momentum=constant_op.constant(0.9))
        mom_update = mom_opt.apply_gradients(
            zip([grads0, grads1], [var0, var1]))
        variables.global_variables_initializer().run()
        # Check we have slots
        self.assertEqual(["momentum"], mom_opt.get_slot_names())
        slot0 = mom_opt.get_slot(var0, "momentum")
        self.assertEquals(slot0.get_shape(), var0.get_shape())
        self.assertFalse(slot0 in variables.trainable_variables())
        slot1 = mom_opt.get_slot(var1, "momentum")
        self.assertEquals(slot1.get_shape(), var1.get_shape())
        self.assertFalse(slot1 in variables.trainable_variables())

        # Fetch params to validate initial values
        self.assertAllClose([1.0, 2.0], self.evaluate(var0))
        self.assertAllClose([3.0, 4.0], self.evaluate(var1))
        # Step 1: the momentum accumulators where 0. So we should see a normal
        # update: v -= grad * learning_rate
        mom_update.run()
        # Check that the momentum accumulators have been updated.
        self.assertAllCloseAccordingToType(
            np.array([0.1, 0.1]), self.evaluate(slot0))
        self.assertAllCloseAccordingToType(
            np.array([0.01, 0.01]), self.evaluate(slot1))
        # Check that the parameters have been updated.
        self.assertAllCloseAccordingToType(
            np.array([1.0 - (0.1 * 2.0), 2.0 - (0.1 * 2.0)]),
            self.evaluate(var0))
        self.assertAllCloseAccordingToType(
            np.array([3.0 - (0.01 * 2.0), 4.0 - (0.01 * 2.0)]),
            self.evaluate(var1))
        # Step 2: the momentum accumulators contain the previous update.
        mom_update.run()
        # Check that the momentum accumulators have been updated.
        self.assertAllCloseAccordingToType(
            np.array([(0.9 * 0.1 + 0.1), (0.9 * 0.1 + 0.1)]),
            self.evaluate(slot0))
        self.assertAllCloseAccordingToType(
            np.array([(0.9 * 0.01 + 0.01), (0.9 * 0.01 + 0.01)]),
            self.evaluate(slot1))
        # Check that the parameters have been updated.
        self.assertAllCloseAccordingToType(
            np.array([
                1.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0),
                2.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0)
            ]), self.evaluate(var0))
        self.assertAllCloseAccordingToType(
            np.array([
                2.98 - ((0.9 * 0.01 + 0.01) * 2.0),
                3.98 - ((0.9 * 0.01 + 0.01) * 2.0)
            ]), self.evaluate(var1))
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:60,代码来源:momentum_test.py

示例3: testFunctionalConv1DNoReuse

 def testFunctionalConv1DNoReuse(self):
   length = 10
   data = random_ops.random_uniform((5, length, 3), seed=1)
   conv_layers.separable_conv1d(data, 32, 3)
   self.assertEqual(len(variables.trainable_variables()), 3)
   conv_layers.separable_conv1d(data, 32, 3)
   self.assertEqual(len(variables.trainable_variables()), 6)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:7,代码来源:convolutional_test.py

示例4: testMap_Scoped

  def testMap_Scoped(self):
    with self.cached_session() as sess:

      def double_scoped(x):
        """2x with a dummy 2 that is scoped."""
        with variable_scope.variable_scope("body"):
          # Dummy variable, just to check that scoping works as intended.
          two = variable_scope.get_variable(
              "two", [],
              dtype=dtypes.int32,
              initializer=init_ops.constant_initializer(2))
          return math_ops.multiply(x, two)

      with variable_scope.variable_scope("root") as varscope:
        elems = constant_op.constant([1, 2, 3, 4, 5, 6], name="data")
        doubles = np.array([2 * x for x in [1, 2, 3, 4, 5, 6]])

        r = functional_ops.map_fn(double_scoped, elems)
        # Check that we have the one variable we asked for here.
        self.assertEqual(len(variables.trainable_variables()), 1)
        self.assertEqual(variables.trainable_variables()[0].name,
                         "root/body/two:0")
        sess.run([variables.global_variables_initializer()])
        self.assertAllEqual(doubles, self.evaluate(r))

        # Now let's reuse our single variable.
        varscope.reuse_variables()
        r = functional_ops.map_fn(double_scoped, elems)
        self.assertEqual(len(variables.trainable_variables()), 1)
        self.assertAllEqual(doubles, self.evaluate(r))
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:30,代码来源:functional_ops_test.py

示例5: testFunctionalConv2DTransposeNoReuse

 def testFunctionalConv2DTransposeNoReuse(self):
   height, width = 7, 9
   images = random_ops.random_uniform((5, height, width, 3), seed=1)
   conv_layers.conv2d_transpose(images, 32, [3, 3])
   self.assertEqual(len(variables.trainable_variables()), 2)
   conv_layers.conv2d_transpose(images, 32, [3, 3])
   self.assertEqual(len(variables.trainable_variables()), 4)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:7,代码来源:convolutional_test.py

示例6: testFunctionalDenseTwiceReuse

 def testFunctionalDenseTwiceReuse(self):
   inputs = random_ops.random_uniform((5, 3), seed=1)
   core_layers.dense(inputs, 2, name='my_dense')
   vars1 = variables.trainable_variables()
   core_layers.dense(inputs, 2, name='my_dense', reuse=True)
   vars2 = variables.trainable_variables()
   self.assertEqual(vars1, vars2)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:7,代码来源:core_test.py

示例7: testFunctionalConv2DReuse

 def testFunctionalConv2DReuse(self):
   height, width = 7, 9
   images = random_ops.random_uniform((5, height, width, 3), seed=1)
   conv_layers.conv2d(images, 32, [3, 3], name='conv1')
   self.assertEqual(len(variables.trainable_variables()), 2)
   conv_layers.conv2d(images, 32, [3, 3], name='conv1', reuse=True)
   self.assertEqual(len(variables.trainable_variables()), 2)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:7,代码来源:convolutional_test.py

示例8: testFunctionalDenseTwice

 def testFunctionalDenseTwice(self):
   inputs = random_ops.random_uniform((5, 3), seed=1)
   core_layers.dense(inputs, 2)
   vars1 = variables.trainable_variables()
   core_layers.dense(inputs, 2)
   vars2 = variables.trainable_variables()
   self.assertEqual(len(vars1), 2)
   self.assertEqual(len(vars2), 4)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:8,代码来源:core_test.py

示例9: _CheckDecay

  def _CheckDecay(self, ema, actual_decay, dim):
    tens = _Repeat(10.0, dim)
    thirties = _Repeat(30.0, dim)
    var0 = variables.Variable(tens, name="v0")
    var1 = variables.Variable(thirties, name="v1")
    variables.initialize_all_variables().run()
    # Note that tensor2 is not a Variable but just a plain Tensor resulting
    # from the sum operation.
    tensor2 = var0 + var1
    update = ema.apply([var0, var1, tensor2])
    avg0 = ema.average(var0)
    avg1 = ema.average(var1)
    avg2 = ema.average(tensor2)

    self.assertFalse(avg0 in variables.trainable_variables())
    self.assertFalse(avg1 in variables.trainable_variables())
    self.assertFalse(avg2 in variables.trainable_variables())
    variables.initialize_all_variables().run()

    self.assertEqual("v0/ExponentialMovingAverage:0", avg0.name)
    self.assertEqual("v1/ExponentialMovingAverage:0", avg1.name)
    self.assertEqual("add/ExponentialMovingAverage:0", avg2.name)

    # Check initial values.
    self.assertAllClose(tens, var0.eval())
    self.assertAllClose(thirties, var1.eval())
    self.assertAllClose(_Repeat(10.0 + 30.0, dim), tensor2.eval())

    # Check that averages are initialized correctly.
    self.assertAllClose(tens, avg0.eval())
    self.assertAllClose(thirties, avg1.eval())
    # Note that averages of Tensor's initialize to zeros_like since no value
    # of the Tensor is known because the Op has not been run (yet).
    self.assertAllClose(_Repeat(0.0, dim), avg2.eval())

    # Update the averages and check.
    update.run()
    dk = actual_decay

    expected = _Repeat(10.0 * dk + 10.0 * (1 - dk), dim)
    self.assertAllClose(expected, avg0.eval())
    expected = _Repeat(30.0 * dk + 30.0 * (1 - dk), dim)
    self.assertAllClose(expected, avg1.eval())
    expected = _Repeat(0.0 * dk + (10.0 + 30.0) * (1 - dk), dim)
    self.assertAllClose(expected, avg2.eval())

    # Again, update the averages and check.
    update.run()
    expected = _Repeat((10.0 * dk + 10.0 * (1 - dk)) * dk + 10.0 * (1 - dk),
                       dim)
    self.assertAllClose(expected, avg0.eval())
    expected = _Repeat((30.0 * dk + 30.0 * (1 - dk)) * dk + 30.0 * (1 - dk),
                       dim)
    self.assertAllClose(expected, avg1.eval())
    expected = _Repeat(((0.0 * dk + (10.0 + 30.0) * (1 - dk)) * dk +
                        (10.0 + 30.0) * (1 - dk)),
                       dim)
    self.assertAllClose(expected, avg2.eval())
开发者ID:ray2020,项目名称:tensorflow,代码行数:58,代码来源:moving_averages_test.py

示例10: testFunctionalConv3DTransposeReuseFromScope

 def testFunctionalConv3DTransposeReuseFromScope(self):
   with variable_scope.variable_scope('scope'):
     depth, height, width = 5, 7, 9
     volumes = random_ops.random_uniform((5, depth, height, width, 32), seed=1)
     conv_layers.conv3d_transpose(volumes, 4, [3, 3, 3], name='deconv1')
     self.assertEqual(len(variables.trainable_variables()), 2)
   with variable_scope.variable_scope('scope', reuse=True):
     conv_layers.conv3d_transpose(volumes, 4, [3, 3, 3], name='deconv1')
     self.assertEqual(len(variables.trainable_variables()), 2)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:9,代码来源:convolutional_test.py

示例11: testFunctionalConv1DReuseFromScope

 def testFunctionalConv1DReuseFromScope(self):
   with variable_scope.variable_scope('scope'):
     length = 10
     data = random_ops.random_uniform((5, length, 3), seed=1)
     conv_layers.separable_conv1d(data, 32, 3, name='sepconv1')
     self.assertEqual(len(variables.trainable_variables()), 3)
   with variable_scope.variable_scope('scope', reuse=True):
     conv_layers.separable_conv1d(data, 32, 3, name='sepconv1')
     self.assertEqual(len(variables.trainable_variables()), 3)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:9,代码来源:convolutional_test.py

示例12: testFunctionalConv2DTransposeReuseFromScope

 def testFunctionalConv2DTransposeReuseFromScope(self):
   with variable_scope.variable_scope('scope'):
     height, width = 7, 9
     images = random_ops.random_uniform((5, height, width, 3), seed=1)
     conv_layers.conv2d_transpose(images, 32, [3, 3], name='deconv1')
     self.assertEqual(len(variables.trainable_variables()), 2)
   with variable_scope.variable_scope('scope', reuse=True):
     conv_layers.conv2d_transpose(images, 32, [3, 3], name='deconv1')
     self.assertEqual(len(variables.trainable_variables()), 2)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:9,代码来源:convolutional_test.py

示例13: testTimeReversedFusedRNN

  def testTimeReversedFusedRNN(self):
    with self.test_session() as sess:
      initializer = init_ops.random_uniform_initializer(
          -0.01, 0.01, seed=19890213)
      fw_cell = core_rnn_cell_impl.BasicRNNCell(10)
      bw_cell = core_rnn_cell_impl.BasicRNNCell(10)
      batch_size = 5
      input_size = 20
      timelen = 15
      inputs = constant_op.constant(
          np.random.randn(timelen, batch_size, input_size))

      # test bi-directional rnn
      with variable_scope.variable_scope("basic", initializer=initializer):
        unpacked_inputs = array_ops.unstack(inputs)
        outputs, fw_state, bw_state = core_rnn.static_bidirectional_rnn(
            fw_cell, bw_cell, unpacked_inputs, dtype=dtypes.float64)
        packed_outputs = array_ops.stack(outputs)
        basic_vars = [
            v for v in variables.trainable_variables()
            if v.name.startswith("basic/")
        ]
        sess.run([variables.global_variables_initializer()])
        basic_outputs, basic_fw_state, basic_bw_state = sess.run(
            [packed_outputs, fw_state, bw_state])
        basic_grads = sess.run(gradients_impl.gradients(packed_outputs, inputs))
        basic_wgrads = sess.run(
            gradients_impl.gradients(packed_outputs, basic_vars))

      with variable_scope.variable_scope("fused", initializer=initializer):
        fused_cell = fused_rnn_cell.FusedRNNCellAdaptor(
            core_rnn_cell_impl.BasicRNNCell(10))
        fused_bw_cell = fused_rnn_cell.TimeReversedFusedRNN(
            fused_rnn_cell.FusedRNNCellAdaptor(
                core_rnn_cell_impl.BasicRNNCell(10)))
        fw_outputs, fw_state = fused_cell(
            inputs, dtype=dtypes.float64, scope="fw")
        bw_outputs, bw_state = fused_bw_cell(
            inputs, dtype=dtypes.float64, scope="bw")
        outputs = array_ops.concat([fw_outputs, bw_outputs], 2)
        fused_vars = [
            v for v in variables.trainable_variables()
            if v.name.startswith("fused/")
        ]
        sess.run([variables.global_variables_initializer()])
        fused_outputs, fused_fw_state, fused_bw_state = sess.run(
            [outputs, fw_state, bw_state])
        fused_grads = sess.run(gradients_impl.gradients(outputs, inputs))
        fused_wgrads = sess.run(gradients_impl.gradients(outputs, fused_vars))

      self.assertAllClose(basic_outputs, fused_outputs)
      self.assertAllClose(basic_fw_state, fused_fw_state)
      self.assertAllClose(basic_bw_state, fused_bw_state)
      self.assertAllClose(basic_grads, fused_grads)
      for basic, fused in zip(basic_wgrads, fused_wgrads):
        self.assertAllClose(basic, fused, rtol=1e-2, atol=1e-2)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:56,代码来源:fused_rnn_cell_test.py

示例14: _rnn_get_variable

 def _rnn_get_variable(self, getter, *args, **kwargs):
   variable = getter(*args, **kwargs)
   trainable = (variable in tf_variables.trainable_variables() or
                (isinstance(variable, tf_variables.PartitionedVariable) and
                 list(variable)[0] in tf_variables.trainable_variables()))
   if trainable and variable not in self._trainable_weights:
     self._trainable_weights.append(variable)
   elif not trainable and variable not in self._non_trainable_weights:
     self._non_trainable_weights.append(variable)
   return variable
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:10,代码来源:rnn_cell_impl.py

示例15: testFunctionalDenseTwiceReuseFromScope

 def testFunctionalDenseTwiceReuseFromScope(self):
   with self.test_session():
     with variable_scope.variable_scope('scope'):
       inputs = random_ops.random_uniform((5, 3), seed=1)
       core_layers.dense(inputs, 2, name='my_dense')
       vars1 = variables.trainable_variables()
     with variable_scope.variable_scope('scope', reuse=True):
       core_layers.dense(inputs, 2, name='my_dense')
       vars2 = variables.trainable_variables()
     self.assertEqual(vars1, vars2)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:10,代码来源:core_test.py


注:本文中的tensorflow.python.ops.variables.trainable_variables函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。