当前位置: 首页>>代码示例>>Python>>正文


Python resource_variable_ops.destroy_resource_op函数代码示例

本文整理汇总了Python中tensorflow.python.ops.resource_variable_ops.destroy_resource_op函数的典型用法代码示例。如果您正苦于以下问题:Python destroy_resource_op函数的具体用法?Python destroy_resource_op怎么用?Python destroy_resource_op使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了destroy_resource_op函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testDestruction

 def testDestruction(self):
   with context.eager_mode():
     var = resource_variable_ops.ResourceVariable(initial_value=1.0,
                                                  name="var8")
     var.__del__()
     with self.assertRaisesRegexp(errors.NotFoundError,
                                  r"Resource .*\/var8\/.* does not exist."):
       resource_variable_ops.destroy_resource_op(var._handle,
                                                 ignore_lookup_error=False)
开发者ID:alexsax,项目名称:tensorflow,代码行数:9,代码来源:resource_variable_ops_test.py

示例2: testDestroyResource

 def testDestroyResource(self):
   v = resource_variable_ops.ResourceVariable(3.0, name="var0")
   self.evaluate(variables.global_variables_initializer())
   self.assertEqual(3.0, self.evaluate(v.value()))
   self.evaluate(resource_variable_ops.destroy_resource_op(v.handle))
   with self.assertRaises(errors.FailedPreconditionError):
     self.evaluate(v.value())
   # Handle to a resource not actually created.
   handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[])
   # Should raise no exception
   self.evaluate(resource_variable_ops.destroy_resource_op(
       handle, ignore_lookup_error=True))
开发者ID:aeverall,项目名称:tensorflow,代码行数:12,代码来源:resource_variable_ops_test.py

示例3: testDestroyResource

 def testDestroyResource(self):
   with self.test_session() as sess:
     v = resource_variable_ops.ResourceVariable(3.0)
     variables.global_variables_initializer().run()
     self.assertEqual(3.0, v.value().eval())
     sess.run(resource_variable_ops.destroy_resource_op(v.handle))
     with self.assertRaises(errors.NotFoundError):
       v.value().eval()
     # Handle to a resource not actually created.
     handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[])
     # Should raise no exception
     sess.run(resource_variable_ops.destroy_resource_op(
         handle, ignore_lookup_error=True))
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:13,代码来源:resource_variable_ops_test.py

示例4: _create_ops

  def _create_ops(self, ds, ds_iterator, buffer_name, device0, device1):
    ds_iterator_handle = ds_iterator.string_handle()

    @function.Defun(dtypes.string)
    def _remote_fn(h):
      remote_iterator = iterator_ops.Iterator.from_string_handle(
          h, ds.output_types, ds.output_shapes)
      return remote_iterator.get_next()

    target = constant_op.constant(device0)
    with ops.device(device1):
      buffer_resource_handle = prefetching_ops.function_buffering_resource(
          f=_remote_fn,
          output_types=[dtypes.float32],
          target_device=target,
          string_arg=ds_iterator_handle,
          buffer_size=3,
          shared_name=buffer_name)

    with ops.device(device1):
      prefetch_op = prefetching_ops.function_buffering_resource_get_next(
          function_buffer_resource=buffer_resource_handle,
          output_types=[dtypes.float32])
      reset_op = prefetching_ops.function_buffering_resource_reset(
          function_buffer_resource=buffer_resource_handle)
      destroy_op = resource_variable_ops.destroy_resource_op(
          buffer_resource_handle, ignore_lookup_error=True)

    return (prefetch_op, reset_op, destroy_op)
开发者ID:baojianzhou,项目名称:tensorflow,代码行数:29,代码来源:prefetching_ops_test.py

示例5: _prefetch_fn_helper

  def _prefetch_fn_helper(self, buffer_name, device0, device1):
    worker_config = config_pb2.ConfigProto()
    worker_config.device_count["CPU"] = 2

    def gen():
      for i in itertools.count(start=1, step=1):
        yield [i + 0.0]
        if i == 6:
          self._event.set()

    with ops.device(device0):
      dataset_3 = dataset_ops.Dataset.from_generator(gen, (dtypes.float32))
      iterator_3 = dataset_3.make_one_shot_iterator()
      iterator_3_handle = iterator_3.string_handle()

    @function.Defun(dtypes.string)
    def _remote_fn(h):
      remote_iterator = iterator_ops.Iterator.from_string_handle(
          h, dataset_3.output_types, dataset_3.output_shapes)
      return remote_iterator.get_next()

    target = constant_op.constant(device0)
    with ops.device(device1):
      buffer_resource_handle = prefetching_ops.function_buffering_resource(
          f=_remote_fn,
          target_device=target,
          string_arg=iterator_3_handle,
          buffer_size=3,
          thread_pool_size=2,
          shared_name=buffer_name)

    with ops.device(device1):
      prefetch_op = prefetching_ops.function_buffering_resource_get_next(
          function_buffer_resource=buffer_resource_handle,
          output_types=[dtypes.float32])

    with self.test_session(config=worker_config) as sess:
      elem = sess.run(prefetch_op)
      self.assertEqual(elem, [1.0])
      elem = sess.run(prefetch_op)
      self.assertEqual(elem, [2.0])
      elem = sess.run(prefetch_op)
      self.assertEqual(elem, [3.0])
      elem = sess.run(prefetch_op)
      self.assertEqual(elem, [4.0])
      self._event.wait()
      elem = sess.run(prefetch_op)
      self.assertEqual(elem, [5.0])
      sess.run(
          resource_variable_ops.destroy_resource_op(
              buffer_resource_handle, ignore_lookup_error=True))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:51,代码来源:prefetching_ops_test.py

示例6: _finalize_func

    def _finalize_func(string_handle):
      """Destroys the iterator resource created.

      Args:
        string_handle: An iterator string handle created by _init_func
      Returns:
        Tensor constant 0
      """
      iterator_resource = gen_dataset_ops.iterator_from_string_handle_v2(
          string_handle,
          **dataset_ops.flat_structure(self._input_dataset))
      with ops.control_dependencies([
          resource_variable_ops.destroy_resource_op(
              iterator_resource, ignore_lookup_error=True)]):
        return array_ops.constant(0, dtypes.int64)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:15,代码来源:prefetching_ops.py

示例7: testStringsGPU

  def testStringsGPU(self):
    if not test_util.is_gpu_available():
      self.skipTest("No GPU available")

    device0 = "/job:localhost/replica:0/task:0/cpu:0"
    device1 = "/job:localhost/replica:0/task:0/gpu:0"

    ds = dataset_ops.Dataset.from_tensor_slices(["a", "b", "c"])
    ds_iterator = ds.make_one_shot_iterator()
    ds_iterator_handle = ds_iterator.string_handle()

    @function.Defun(dtypes.string)
    def _remote_fn(h):
      remote_iterator = iterator_ops.Iterator.from_string_handle(
          h, ds.output_types, ds.output_shapes)
      return remote_iterator.get_next()

    target = constant_op.constant(device0)
    with ops.device(device1):
      buffer_resource_handle = prefetching_ops.function_buffering_resource(
          f=_remote_fn,
          output_types=[dtypes.string],
          target_device=target,
          string_arg=ds_iterator_handle,
          buffer_size=3,
          shared_name="strings")

    with ops.device(device1):
      prefetch_op = prefetching_ops.function_buffering_resource_get_next(
          function_buffer_resource=buffer_resource_handle,
          output_types=[dtypes.string])
      destroy_op = resource_variable_ops.destroy_resource_op(
          buffer_resource_handle, ignore_lookup_error=True)

    with self.cached_session() as sess:
      self.assertEqual([b"a"], sess.run(prefetch_op))
      self.assertEqual([b"b"], sess.run(prefetch_op))
      self.assertEqual([b"c"], sess.run(prefetch_op))
      with self.assertRaises(errors.OutOfRangeError):
        sess.run(prefetch_op)

      sess.run(destroy_op)
开发者ID:baojianzhou,项目名称:tensorflow,代码行数:42,代码来源:prefetching_ops_test.py

示例8: __del__

 def __del__(self):
   if self._resource is not None:
     resource_variable_ops.destroy_resource_op(self._resource)
   self._resource = None
开发者ID:Crazyonxh,项目名称:tensorflow,代码行数:4,代码来源:datasets.py

示例9: _model_fn

  def _model_fn(features, labels, mode):
    """Function that returns predictions, training loss, and training op."""
    if (isinstance(features, ops.Tensor) or
        isinstance(features, sparse_tensor.SparseTensor)):
      features = {'features': features}
    weights = None
    if weights_name and weights_name in features:
      weights = features.pop(weights_name)

    keys = None
    if keys_name and keys_name in features:
      keys = features.pop(keys_name)

    # If we're doing eval, optionally ignore device_assigner.
    # Also ignore device assigner if we're exporting (mode == INFER)
    dev_assn = device_assigner
    if (mode == model_fn_lib.ModeKeys.INFER or
        (local_eval and mode == model_fn_lib.ModeKeys.EVAL)):
      dev_assn = None

    graph_builder = graph_builder_class(params,
                                        device_assigner=dev_assn)

    logits, tree_paths, regression_variance = graph_builder.inference_graph(
        features)

    summary.scalar('average_tree_size', graph_builder.average_size())
    # For binary classification problems, convert probabilities to logits.
    # Includes hack to get around the fact that a probability might be 0 or 1.
    if not params.regression and params.num_classes == 2:
      class_1_probs = array_ops.slice(logits, [0, 1], [-1, 1])
      logits = math_ops.log(
          math_ops.maximum(class_1_probs / math_ops.maximum(
              1.0 - class_1_probs, EPSILON), EPSILON))

    # labels might be None if we're doing prediction (which brings up the
    # question of why we force everything to adhere to a single model_fn).
    training_graph = None
    training_hooks = []
    if labels is not None and mode == model_fn_lib.ModeKeys.TRAIN:
      with ops.control_dependencies([logits.op]):
        training_graph = control_flow_ops.group(
            graph_builder.training_graph(
                features, labels, input_weights=weights,
                num_trainers=num_trainers,
                trainer_id=trainer_id),
            state_ops.assign_add(contrib_framework.get_global_step(), 1))

    # Put weights back in
    if weights is not None:
      features[weights_name] = weights

    # TensorForest's training graph isn't calculated directly from the loss
    # like many other models.
    def _train_fn(unused_loss):
      return training_graph

    model_ops = model_head.create_model_fn_ops(
        features=features,
        labels=labels,
        mode=mode,
        train_op_fn=_train_fn,
        logits=logits,
        scope=head_scope)

    # Ops are run in lexigraphical order of their keys. Run the resource
    # clean-up op last.
    all_handles = graph_builder.get_all_resource_handles()
    ops_at_end = {
        '9: clean up resources': control_flow_ops.group(
            *[resource_variable_ops.destroy_resource_op(handle)
              for handle in all_handles])}

    if report_feature_importances:
      ops_at_end['1: feature_importances'] = (
          graph_builder.feature_importances())

    training_hooks.append(TensorForestRunOpAtEndHook(ops_at_end))

    if early_stopping_rounds:
      training_hooks.append(
          TensorForestLossHook(
              early_stopping_rounds,
              early_stopping_loss_threshold=early_stopping_loss_threshold,
              loss_op=model_ops.loss))

    model_ops.training_hooks.extend(training_hooks)

    if keys is not None:
      model_ops.predictions[keys_name] = keys

    if params.inference_tree_paths:
      model_ops.predictions[TREE_PATHS_PREDICTION_KEY] = tree_paths

    if params.regression:
      model_ops.predictions[VARIANCE_PREDICTION_KEY] = regression_variance

    return model_ops
开发者ID:rmcguinness,项目名称:tensorflow,代码行数:98,代码来源:random_forest.py

示例10: _model_fn

  def _model_fn(features, labels, mode):
    """Function that returns predictions, training loss, and training op."""

    if (isinstance(features, ops.Tensor) or
        isinstance(features, sparse_tensor.SparseTensor)):
      features = {'features': features}
    if feature_columns:
      features = features.copy()

      if output_type == ModelBuilderOutputType.MODEL_FN_OPS:
        features.update(layers.transform_features(features, feature_columns))
      else:
        for fc in feature_columns:
          tensor = fc_core._transform_features(features, [fc])[fc]  # pylint: disable=protected-access
          features[fc.name] = tensor

    weights = None
    if weights_name and weights_name in features:
      weights = features.pop(weights_name)

    keys = None
    if keys_name and keys_name in features:
      keys = features.pop(keys_name)

    # If we're doing eval, optionally ignore device_assigner.
    # Also ignore device assigner if we're exporting (mode == INFER)
    dev_assn = device_assigner
    if (mode == model_fn_lib.ModeKeys.INFER or
        (local_eval and mode == model_fn_lib.ModeKeys.EVAL)):
      dev_assn = None

    graph_builder = graph_builder_class(params,
                                        device_assigner=dev_assn)

    logits, tree_paths, regression_variance = graph_builder.inference_graph(
        features)

    summary.scalar('average_tree_size', graph_builder.average_size())
    # For binary classification problems, convert probabilities to logits.
    # Includes hack to get around the fact that a probability might be 0 or 1.
    if not params.regression and params.num_classes == 2:
      class_1_probs = array_ops.slice(logits, [0, 1], [-1, 1])
      logits = math_ops.log(
          math_ops.maximum(class_1_probs / math_ops.maximum(
              1.0 - class_1_probs, EPSILON), EPSILON))

    # labels might be None if we're doing prediction (which brings up the
    # question of why we force everything to adhere to a single model_fn).
    training_graph = None
    training_hooks = []
    if labels is not None and mode == model_fn_lib.ModeKeys.TRAIN:
      with ops.control_dependencies([logits.op]):
        training_graph = control_flow_ops.group(
            graph_builder.training_graph(
                features, labels, input_weights=weights,
                num_trainers=num_trainers,
                trainer_id=trainer_id),
            state_ops.assign_add(training_util.get_global_step(), 1))

    # Put weights back in
    if weights is not None:
      features[weights_name] = weights

    # TensorForest's training graph isn't calculated directly from the loss
    # like many other models.
    def _train_fn(unused_loss):
      return training_graph


    # Ops are run in lexigraphical order of their keys. Run the resource
    # clean-up op last.
    all_handles = graph_builder.get_all_resource_handles()
    ops_at_end = {
        '9: clean up resources':
            control_flow_ops.group(*[
                resource_variable_ops.destroy_resource_op(handle)
                for handle in all_handles
            ])
    }

    if report_feature_importances:
      ops_at_end['1: feature_importances'] = (
          graph_builder.feature_importances())

    training_hooks = [TensorForestRunOpAtEndHook(ops_at_end)]

    if output_type == ModelBuilderOutputType.MODEL_FN_OPS:
      model_ops = model_head.create_model_fn_ops(
          features=features,
          labels=labels,
          mode=mode,
          train_op_fn=_train_fn,
          logits=logits,
          scope=head_scope)

      if early_stopping_rounds:
        training_hooks.append(
            TensorForestLossHook(
                early_stopping_rounds,
                early_stopping_loss_threshold=early_stopping_loss_threshold,
#.........这里部分代码省略.........
开发者ID:AnishShah,项目名称:tensorflow,代码行数:101,代码来源:random_forest.py

示例11: __del__

 def __del__(self):
   if self._resource is not None:
     with ops.device("/device:CPU:0"):
       resource_variable_ops.destroy_resource_op(self._resource)
   self._resource = None
开发者ID:DjangoPeng,项目名称:tensorflow,代码行数:5,代码来源:datasets.py


注:本文中的tensorflow.python.ops.resource_variable_ops.destroy_resource_op函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。