当前位置: 首页>>代码示例>>Python>>正文


Python random_ops.random_poisson函数代码示例

本文整理汇总了Python中tensorflow.python.ops.random_ops.random_poisson函数的典型用法代码示例。如果您正苦于以下问题:Python random_poisson函数的具体用法?Python random_poisson怎么用?Python random_poisson使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了random_poisson函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: loop_fn

 def loop_fn(i):
   rates_i = array_ops.gather(rates, i)
   # Test both scalar and non-scalar params and shapes.
   return (random_ops.random_poisson(lam=rates_i[0, 0], shape=[]),
           random_ops.random_poisson(lam=rates_i, shape=[]),
           random_ops.random_poisson(lam=rates_i[0, 0], shape=[3]),
           random_ops.random_poisson(lam=rates_i, shape=[3]))
开发者ID:aritratony,项目名称:tensorflow,代码行数:7,代码来源:control_flow_ops_test.py

示例2: testDTypeCombinationsV2

 def testDTypeCombinationsV2(self):
   """Tests random_poisson_v2() for all supported dtype combinations."""
   with self.cached_session():
     for lam_dt in _SUPPORTED_DTYPES:
       for out_dt in _SUPPORTED_DTYPES:
         random_ops.random_poisson(
             constant_op.constant([1], dtype=lam_dt), [10],
             dtype=out_dt).eval()
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:8,代码来源:random_poisson_test.py

示例3: testNoCSE

  def testNoCSE(self):
    """CSE = constant subexpression eliminator.

    SetIsStateful() should prevent two identical random ops from getting
    merged.
    """
    for dtype in dtypes.float16, dtypes.float32, dtypes.float64:
      with self.cached_session(use_gpu=True):
        rnd1 = random_ops.random_poisson(2.0, [24], dtype=dtype)
        rnd2 = random_ops.random_poisson(2.0, [24], dtype=dtype)
        diff = rnd2 - rnd1
        # Since these are all positive integers, the norm will
        # be at least 1 if they are different.
        self.assertGreaterEqual(np.linalg.norm(diff.eval()), 1)
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:14,代码来源:random_poisson_test.py

示例4: func

 def func():
   with self.session(use_gpu=use_gpu, graph=ops.Graph()) as sess:
     rng = random_ops.random_poisson(lam, [num], dtype=dtype, seed=seed)
     ret = np.empty([10, num])
     for i in xrange(10):
       ret[i, :] = sess.run(rng)
   return ret
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:7,代码来源:random_poisson_test.py

示例5: resample_at_rate

def resample_at_rate(inputs, rates, scope=None, seed=None, back_prop=False):
  """Given `inputs` tensors, stochastically resamples each at a given rate.

  For example, if the inputs are `[[a1, a2], [b1, b2]]` and the rates
  tensor contains `[3, 1]`, then the return value may look like `[[a1,
  a2, a1, a1], [b1, b2, b1, b1]]`. However, many other outputs are
  possible, since this is stochastic -- averaged over many repeated
  calls, each set of inputs should appear in the output `rate` times
  the number of invocations.

  Args:
    inputs: A list of tensors, each of which has a shape of `[batch_size, ...]`
    rates: A tensor of shape `[batch_size]` contiaining the resampling rates
       for each input.
    scope: Scope for the op.
    seed: Random seed to use.
    back_prop: Whether to allow back-propagation through this op.

  Returns:
    Selections from the input tensors.
  """
  with ops.name_scope(scope, default_name='resample_at_rate',
                      values=list(inputs) + [rates]):
    rates = ops.convert_to_tensor(rates, name='rates')
    # random_poisson does not support rates of size 0 (b/36076216)
    sample_counts = math_ops.cast(control_flow_ops.cond(
        array_ops.shape(rates)[0] > 0,
        lambda: random_ops.random_poisson(rates, (), rates.dtype, seed=seed),
        lambda: array_ops.zeros(shape=[0], dtype=rates.dtype)), dtypes.int32)
    sample_indices = _repeat_range(sample_counts)
    if not back_prop:
      sample_indices = array_ops.stop_gradient(sample_indices)
    return [array_ops.gather(x, sample_indices) for x in inputs]
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:33,代码来源:resample.py

示例6: _sample_n

 def _sample_n(self, n, seed=None):
   # Get ids as a [n, batch_size]-shaped matrix, unless batch_shape=[] then get
   # ids as a [n]-shaped vector.
   batch_size = (np.prod(self.batch_shape.as_list(), dtype=np.int32)
                 if self.batch_shape.is_fully_defined()
                 else math_ops.reduce_prod(self.batch_shape_tensor()))
   ids = self._mixture_distribution.sample(
       sample_shape=concat_vectors(
           [n],
           distribution_util.pick_vector(
               self.is_scalar_batch(),
               np.int32([]),
               [batch_size])),
       seed=distribution_util.gen_new_seed(
           seed, "poisson_lognormal_quadrature_compound"))
   # Stride `quadrature_size` for `batch_size` number of times.
   offset = math_ops.range(start=0,
                           limit=batch_size * self._quadrature_size,
                           delta=self._quadrature_size,
                           dtype=ids.dtype)
   ids += offset
   rate = array_ops.gather(
       array_ops.reshape(self.distribution.rate, shape=[-1]), ids)
   rate = array_ops.reshape(
       rate, shape=concat_vectors([n], self.batch_shape_tensor()))
   return random_ops.random_poisson(
       lam=rate, shape=[], dtype=self.dtype, seed=seed)
开发者ID:Kongsea,项目名称:tensorflow,代码行数:27,代码来源:poisson_lognormal.py

示例7: _sample_n

 def _sample_n(self, n, seed=None):
   # Here we use the fact that if:
   # lam ~ Gamma(concentration=total_count, rate=(1-probs)/probs)
   # then X ~ Poisson(lam) is Negative Binomially distributed.
   rate = random_ops.random_gamma(
       shape=[n],
       alpha=self.total_count,
       beta=math_ops.exp(-self.logits),
       dtype=self.dtype,
       seed=seed)
   return random_ops.random_poisson(
       rate,
       shape=[],
       dtype=self.dtype,
       seed=distribution_util.gen_new_seed(seed, "negative_binom"))
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:15,代码来源:negative_binomial.py

示例8: testShape

 def testShape(self):
   # Fully known shape
   rnd = random_ops.random_poisson(2.0, [150], seed=12345)
   self.assertEqual([150], rnd.get_shape().as_list())
   rnd = random_ops.random_poisson(
       lam=array_ops.ones([1, 2, 3]),
       shape=[150],
       seed=12345)
   self.assertEqual([150, 1, 2, 3], rnd.get_shape().as_list())
   rnd = random_ops.random_poisson(
       lam=array_ops.ones([1, 2, 3]),
       shape=[20, 30],
       seed=12345)
   self.assertEqual([20, 30, 1, 2, 3], rnd.get_shape().as_list())
   rnd = random_ops.random_poisson(
       lam=array_ops.placeholder(dtypes.float32, shape=(2,)),
       shape=[12],
       seed=12345)
   self.assertEqual([12, 2], rnd.get_shape().as_list())
   # Partially known shape.
   rnd = random_ops.random_poisson(
       lam=array_ops.ones([7, 3]),
       shape=array_ops.placeholder(dtypes.int32, shape=(1,)),
       seed=12345)
   self.assertEqual([None, 7, 3], rnd.get_shape().as_list())
   rnd = random_ops.random_poisson(
       lam=array_ops.ones([9, 6]),
       shape=array_ops.placeholder(dtypes.int32, shape=(3,)),
       seed=12345)
   self.assertEqual([None, None, None, 9, 6], rnd.get_shape().as_list())
   # Unknown shape.
   rnd = random_ops.random_poisson(
       lam=array_ops.placeholder(dtypes.float32),
       shape=array_ops.placeholder(dtypes.int32),
       seed=12345)
   self.assertIs(None, rnd.get_shape().ndims)
   rnd = random_ops.random_poisson(
       lam=array_ops.placeholder(dtypes.float32),
       shape=[50],
       seed=12345)
   self.assertIs(None, rnd.get_shape().ndims)
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:41,代码来源:random_poisson_test.py

示例9: _sample_n

  def _sample_n(self, n, seed=None):
    # Get ids as a [n, batch_size]-shaped matrix, unless batch_shape=[] then get
    # ids as a [n]-shaped vector.
    batch_size = self.batch_shape.num_elements()
    if batch_size is None:
      batch_size = math_ops.reduce_prod(self.batch_shape_tensor())
    # We need to "sample extra" from the mixture distribution if it doesn't
    # already specify a probs vector for each batch coordinate.
    # We only support this kind of reduced broadcasting, i.e., there is exactly
    # one probs vector for all batch dims or one for each.
    ids = self._mixture_distribution.sample(
        sample_shape=concat_vectors(
            [n],
            distribution_util.pick_vector(
                self.mixture_distribution.is_scalar_batch(),
                [batch_size],
                np.int32([]))),
        seed=distribution_util.gen_new_seed(
            seed, "poisson_lognormal_quadrature_compound"))
    # We need to flatten batch dims in case mixture_distribution has its own
    # batch dims.
    ids = array_ops.reshape(ids, shape=concat_vectors(
        [n],
        distribution_util.pick_vector(
            self.is_scalar_batch(),
            np.int32([]),
            np.int32([-1]))))

    # Stride `quadrature_size` for `batch_size` number of times.
    offset = math_ops.range(start=0,
                            limit=batch_size * self._quadrature_size,
                            delta=self._quadrature_size,
                            dtype=ids.dtype)
    ids += offset
    rate = array_ops.gather(
        array_ops.reshape(self.distribution.rate, shape=[-1]), ids)
    rate = array_ops.reshape(
        rate, shape=concat_vectors([n], self.batch_shape_tensor()))
    return random_ops.random_poisson(
        lam=rate, shape=[], dtype=self.dtype, seed=seed)
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:40,代码来源:poisson_lognormal.py

示例10: testZeroShape

 def testZeroShape(self):
   with self.cached_session():
     rnd = random_ops.random_poisson([], [], seed=12345)
     self.assertEqual([0], rnd.get_shape().as_list())
     self.assertAllClose(np.array([], dtype=np.float32), rnd.eval())
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:5,代码来源:random_poisson_test.py

示例11: _sample_n

 def _sample_n(self, n, seed=None):
   return random_ops.random_poisson(
       self.rate, [n], dtype=self.dtype, seed=seed)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:3,代码来源:poisson.py


注:本文中的tensorflow.python.ops.random_ops.random_poisson函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。