当前位置: 首页>>代码示例>>Python>>正文


Python nn.relu函数代码示例

本文整理汇总了Python中tensorflow.python.ops.nn.relu函数的典型用法代码示例。如果您正苦于以下问题:Python relu函数的具体用法?Python relu怎么用?Python relu使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了relu函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_test_network_4

def create_test_network_4():
  """Misaligned network for test.

  The graph corresponds to a variation from the example from the second figure
  in go/cnn-rf-computation#arbitrary-computation-graphs. Layer 2 uses 'SAME'
  padding, which makes its padding dependent on the input image dimensionality.
  In this case, the effective padding will be undetermined, and the utility is
  not able to check the network alignment.

  Returns:
    g: Tensorflow graph object (Graph proto).
  """
  g = ops.Graph()
  with g.as_default():
    # An input test image with unknown spatial resolution.
    x = array_ops.placeholder(
        dtypes.float32, (None, None, None, 1), name='input_image')
    # Left branch.
    l1 = slim.conv2d(x, 1, [1, 1], stride=4, scope='L1', padding='VALID')
    # Right branch.
    l2 = slim.conv2d(x, 1, [3, 3], stride=2, scope='L2', padding='SAME')
    l3 = slim.conv2d(l2, 1, [1, 1], stride=2, scope='L3', padding='VALID')
    # Addition.
    nn.relu(l1 + l3, name='output')
  return g
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:25,代码来源:receptive_field_test.py

示例2: create_test_network_7

def create_test_network_7():
  """Aligned network for test, with a control dependency.

  The graph is similar to create_test_network_1(), except that it includes an
  assert operation on the left branch.

  Returns:
    g: Tensorflow graph object (Graph proto).
  """
  g = ops.Graph()
  with g.as_default():
    # An 8x8 test image.
    x = array_ops.placeholder(dtypes.float32, (1, 8, 8, 1), name='input_image')
    # Left branch.
    l1 = slim.conv2d(x, 1, [1, 1], stride=4, scope='L1', padding='VALID')
    l1_shape = array_ops.shape(l1)
    assert_op = control_flow_ops.Assert(
        gen_math_ops.equal(l1_shape[1], 2), [l1_shape], summarize=4)
    # Right branch.
    l2_pad = array_ops.pad(x, [[0, 0], [1, 0], [1, 0], [0, 0]])
    l2 = slim.conv2d(l2_pad, 1, [3, 3], stride=2, scope='L2', padding='VALID')
    l3 = slim.conv2d(l2, 1, [1, 1], stride=2, scope='L3', padding='VALID')
    # Addition.
    with ops.control_dependencies([assert_op]):
      nn.relu(l1 + l3, name='output')
  return g
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:26,代码来源:receptive_field_test.py

示例3: create_test_network_9

def create_test_network_9():
  """Aligned network for test, including an intermediate addition.

  The graph is the same as create_test_network_8(), except that VALID padding is
  changed to SAME.

  Returns:
    g: Tensorflow graph object (Graph proto).
  """
  g = ops.Graph()
  with g.as_default():
    # An input test image with unknown spatial resolution.
    x = array_ops.placeholder(
        dtypes.float32, (None, None, None, 1), name='input_image')
    # Left branch before first addition.
    l1 = slim.conv2d(x, 1, [1, 1], stride=4, scope='L1', padding='SAME')
    # Right branch before first addition.
    l2 = slim.conv2d(x, 1, [3, 3], stride=2, scope='L2', padding='SAME')
    l3 = slim.conv2d(l2, 1, [1, 1], stride=2, scope='L3', padding='SAME')
    # First addition.
    l4 = nn.relu(l1 + l3)
    # Left branch after first addition.
    l5 = slim.conv2d(l4, 1, [1, 1], stride=2, scope='L5', padding='SAME')
    # Right branch after first addition.
    l6 = slim.conv2d(l4, 1, [3, 3], stride=2, scope='L6', padding='SAME')
    # Final addition.
    nn.relu(l5 + l6, name='output')

  return g
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:29,代码来源:receptive_field_test.py

示例4: create_test_network_2

def create_test_network_2():
  """Aligned network for test.

  The graph corresponds to a variation to the example from the second figure in
  go/cnn-rf-computation#arbitrary-computation-graphs. Layers 2 and 3 are changed
  to max-pooling operations. Since the functionality is the same as convolution,
  the network is aligned and the receptive field size is the same as from the
  network created using create_test_network_1().

  Returns:
    g: Tensorflow graph object (Graph proto).
  """
  g = ops.Graph()
  with g.as_default():
    # An input test image with unknown spatial resolution.
    x = array_ops.placeholder(
        dtypes.float32, (None, None, None, 1), name='input_image')
    # Left branch.
    l1 = slim.conv2d(x, 1, [1, 1], stride=4, scope='L1', padding='VALID')
    # Right branch.
    l2_pad = array_ops.pad(x, [[0, 0], [1, 0], [1, 0], [0, 0]])
    l2 = slim.max_pool2d(l2_pad, [3, 3], stride=2, scope='L2', padding='VALID')
    l3 = slim.max_pool2d(l2, [1, 1], stride=2, scope='L3', padding='VALID')
    # Addition.
    nn.relu(l1 + l3, name='output')
  return g
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:26,代码来源:receptive_field_test.py

示例5: GetParams

 def GetParams(self):
   """Test for Constant broadcasting in TF-TRT."""
   dtype = dtypes.float32
   input_name = 'input'
   input_dims = [5, 12, 12, 2]
   g = ops.Graph()
   with g.as_default():
     x = array_ops.placeholder(dtype=dtype, shape=input_dims, name=input_name)
     filt1 = constant_op.constant(
         0.3, shape=(3, 3, 2, 1), dtype=dtype, name='filt1')
     y1 = nn.conv2d(x, filt1, strides=[1, 1, 1, 1], padding='SAME', name='y1')
     z1 = nn.relu(y1, name='z1')
     filt2 = constant_op.constant(
         np.random.randn(9), shape=(3, 3, 1, 1), dtype=dtype, name='filt2')
     y2 = nn.conv2d(z1, filt2, strides=[1, 1, 1, 1], padding='SAME', name='y2')
     z2 = nn.relu(y2, name='z')
     filt3 = constant_op.constant(
         np.random.randn(3, 3, 1, 1),
         shape=(3, 3, 1, 1),
         dtype=dtype,
         name='filt3')
     y3 = nn.conv2d(z2, filt3, strides=[1, 1, 1, 1], padding='SAME', name='y3')
     nn.relu(y3, name='output')
   return trt_test.TfTrtIntegrationTestParams(
       gdef=g.as_graph_def(),
       input_names=[input_name],
       input_dims=[input_dims],
       num_expected_engines=1,
       expected_output_dims=(5, 12, 12, 1),
       allclose_atol=1.e-02,
       allclose_rtol=1.e-02)
开发者ID:StephenOman,项目名称:tensorflow,代码行数:31,代码来源:const_broadcast_test.py

示例6: create_test_network_8

def create_test_network_8():
  """Aligned network for test, including an intermediate addition.

  The graph is similar to create_test_network_1(), except that it includes a few
  more layers on top. The added layers compose two different branches whose
  receptive fields are different. This makes this test case more challenging; in
  particular, this test fails if a naive DFS-like algorithm is used for RF
  computation.

  Returns:
    g: Tensorflow graph object (Graph proto).
  """
  g = ops.Graph()
  with g.as_default():
    # An input test image with unknown spatial resolution.
    x = array_ops.placeholder(
        dtypes.float32, (None, None, None, 1), name='input_image')
    # Left branch before first addition.
    l1 = slim.conv2d(x, 1, [1, 1], stride=4, scope='L1', padding='VALID')
    # Right branch before first addition.
    l2_pad = array_ops.pad(x, [[0, 0], [1, 0], [1, 0], [0, 0]])
    l2 = slim.conv2d(l2_pad, 1, [3, 3], stride=2, scope='L2', padding='VALID')
    l3 = slim.conv2d(l2, 1, [1, 1], stride=2, scope='L3', padding='VALID')
    # First addition.
    l4 = nn.relu(l1 + l3)
    # Left branch after first addition.
    l5 = slim.conv2d(l4, 1, [1, 1], stride=2, scope='L5', padding='VALID')
    # Right branch after first addition.
    l6_pad = array_ops.pad(l4, [[0, 0], [1, 0], [1, 0], [0, 0]])
    l6 = slim.conv2d(l6_pad, 1, [3, 3], stride=2, scope='L6', padding='VALID')
    # Final addition.
    nn.relu(l5 + l6, name='output')

  return g
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:34,代码来源:receptive_field_test.py

示例7: model

def model():
    print("building model ...")
    with tf.variable_scope('train'):
        print("building model ...")
        X_pl = tf.placeholder(tf.float32, [None, num_features])
        X_expand = tf.expand_dims(X_pl, axis=2)
        print("X_pl", X_pl.get_shape())
        t_pl = tf.placeholder(tf.int32, [None,])
        print("t_pl", t_pl.get_shape())
        is_training_pl = tf.placeholder(tf.bool)
        cell_fw = tf.nn.rnn_cell.GRUCell(205)
        cell_bw = tf.nn.rnn_cell.GRUCell(205)
        seq_len = tf.reduce_sum(tf.ones(tf.shape(X_pl), dtype=tf.int32), axis=1)
        _, enc_states = tf.nn.bidirectional_dynamic_rnn(cell_fw=cell_fw,
            cell_bw=cell_bw, inputs=X_expand, sequence_length=seq_len,
            dtype=tf.float32)
        enc_states = tf.concat(1, enc_states)
        enc_states_drop = dropout(enc_states, is_training=is_training_pl) 
        l1 = fully_connected(enc_states_drop, 200, activation_fn=None)
        l1 = batch_norm(l1, is_training=is_training_pl)
        l1_relu = relu(l1)
        l1_dropout = dropout(l1_relu, is_training=is_training_pl)
        l2 = fully_connected(l1_dropout, 200, activation_fn=None)
        l2 = batch_norm(l2, is_training=is_training_pl)
        l2_relu = relu(l2)
        l_out = fully_connected(l2_relu, num_outputs=num_classes, activation_fn=None)
        l_out_softmax = tf.nn.softmax(l_out)
        tf.contrib.layers.summarize_variables()

    with tf.variable_scope('metrics'):
        loss = sparse_softmax_cross_entropy_with_logits(l_out, t_pl)
        print("loss", loss.get_shape())
        loss = tf.reduce_mean(loss)
        print("loss", loss.get_shape())
        tf.summary.scalar('train/loss', loss)
        argmax = tf.to_int32(tf.argmax(l_out, 1))
        print("argmax", argmax.get_shape())
        correct = tf.to_float(tf.equal(argmax, t_pl))
        print("correct,", correct.get_shape())
        accuracy = tf.reduce_mean(correct)
        print("accuracy", accuracy.get_shape())

    with tf.variable_scope('optimizer'):
        print("building optimizer ...")
        global_step = tf.Variable(0, name='global_step', trainable=False)
        optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
        grads_and_vars = optimizer.compute_gradients(loss)
        gradients, variables = zip(*grads_and_vars)
        clipped_gradients, global_norm = (
            tf.clip_by_global_norm(gradients, clip_norm))
        clipped_grads_and_vars = zip(clipped_gradients, variables)

        tf.summary.scalar('train/global_gradient_norm', global_norm)

        train_op = optimizer.apply_gradients(clipped_grads_and_vars, global_step=global_step)

    return X_pl, t_pl, is_training_pl, l_out, l_out_softmax, loss, accuracy, train_op, global_step
开发者ID:alrojo,项目名称:EEG_DauwelsLab,代码行数:57,代码来源:rnn_big2.py

示例8: two_layer_model

def two_layer_model(x):
  x_image = array_ops.reshape(x, [-1, 28, 28, 1])
  w_conv1 = weight([5, 5, 1, 32])
  b_conv1 = bias([32])
  h_conv1 = nn.relu(conv2d(x_image, w_conv1) + b_conv1)
  h_pool1 = max_pool_2x2(h_conv1)
  w_conv2 = weight([5, 5, 32, 64])
  b_conv2 = bias([64])
  h_conv2 = nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
  h_pool2 = max_pool_2x2(h_conv2)
  return h_pool2
开发者ID:1000sprites,项目名称:tensorflow,代码行数:11,代码来源:layout_optimizer_test.py

示例9: _conv_pool

def _conv_pool(x):
  """(Conv -> bias -> relu -> max_pool) x2."""
  x_image = array_ops.reshape(x, [-1, 8, 8, 1])
  w_conv1 = _weight([3, 3, 1, 6])
  b_conv1 = _bias([6])
  h_conv1 = nn.relu(nn.bias_add(_conv2d(x_image, w_conv1), b_conv1))
  h_pool1 = _max_pool_2x2(h_conv1)
  w_conv2 = _weight([3, 3, 6, 4])
  b_conv2 = _bias([4])
  h_conv2 = nn.relu(nn.bias_add(_conv2d(h_pool1, w_conv2), b_conv2))
  h_pool2 = _max_pool_2x2(h_conv2)
  return h_pool2
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:12,代码来源:auto_mixed_precision_test.py

示例10: two_layer_model

def two_layer_model():
  random_seed.set_random_seed(0)
  x = random_ops.truncated_normal([1, 784], seed=0)
  x_image = array_ops.reshape(x, [-1, 28, 28, 1])
  w_conv1 = weight([5, 5, 1, 32])
  b_conv1 = bias([32])
  h_conv1 = nn.relu(conv2d(x_image, w_conv1) + b_conv1)
  h_pool1 = max_pool_2x2(h_conv1)
  w_conv2 = weight([5, 5, 32, 64])
  b_conv2 = bias([64])
  h_conv2 = nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
  h_pool2 = max_pool_2x2(h_conv2)
  return h_pool2
开发者ID:ajaybhat,项目名称:tensorflow,代码行数:13,代码来源:layout_optimizer_test.py

示例11: __init__

  def __init__(self,
               batchnorm_layer=None,
               training=True,
               validate_args=False,
               name="batch_normalization"):
    """Instantiates the `BatchNorm` bijector.

    Args:
      batchnorm_layer: `tf.layers.BatchNormalization` layer object. If `None`,
        defaults to
        `tf.layers.BatchNormalization(gamma_constraint=nn_ops.relu(x) + 1e-6)`.
        This ensures positivity of the scale variable.

      training: If True, updates running-average statistics during call to
        `inverse()`.
      validate_args: Python `bool` indicating whether arguments should be
        checked for correctness.
      name: Python `str` name given to ops managed by this object.
    Raises:
      ValueError: If bn_layer is not an instance of
        `tf.layers.BatchNormalization`, or if it is specified with `renorm=True`
        or a virtual batch size.
    """
    # Scale must be positive.
    g_constraint = lambda x: nn.relu(x) + 1e-6
    self.batchnorm = batchnorm_layer or normalization.BatchNormalization(
        gamma_constraint=g_constraint)
    self._validate_bn_layer(self.batchnorm)
    self._training = training
    super(BatchNormalization, self).__init__(
        validate_args=validate_args, name=name)
开发者ID:DILASSS,项目名称:tensorflow,代码行数:31,代码来源:batch_normalization.py

示例12: GetParams

 def GetParams(self):
   dtype = dtypes.float32
   input_name = "input"
   input_dims = [[[1, 10, 10, 2]], [[2, 10, 10, 2]], [[4, 10, 10, 2]],
                 [[2, 10, 10, 2]]]
   expected_output_dims = [[[1, 10, 10, 1]], [[2, 10, 10, 1]], [[4, 10, 10,
                                                                 1]],
                           [[2, 10, 10, 1]]]
   output_name = "output"
   g = ops.Graph()
   with g.as_default():
     x = array_ops.placeholder(
         dtype=dtype, shape=[None, 10, 10, 2], name=input_name)
     conv_filter = constant_op.constant(
         np.random.randn(3, 3, 2, 1), dtype=dtypes.float32)
     x = nn.conv2d(
         input=x,
         filter=conv_filter,
         strides=[1, 1, 1, 1],
         padding="SAME",
         name="conv")
     bias = constant_op.constant(
         np.random.randn(1, 10, 10, 1), dtype=dtypes.float32)
     x = math_ops.add(x, bias)
     x = nn.relu(x)
     x = array_ops.identity(x, name="output")
   return trt_test.TfTrtIntegrationTestParams(
       gdef=g.as_graph_def(),
       input_names=[input_name],
       input_dims=input_dims,
       output_names=[output_name],
       expected_output_dims=expected_output_dims)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:32,代码来源:lru_cache_test.py

示例13: get_simple_graph_def

 def get_simple_graph_def(self):
   """Create a simple graph and return its graph_def."""
   g = ops.Graph()
   with g.as_default():
     a = aops.placeholder(
         dtype=dtypes.float32, shape=(None, 24, 24, 2), name="input")
     e = cop.constant(
         [[[[1., 0.5, 4., 6., 0.5, 1.], [1., 0.5, 1., 1., 0.5, 1.]]]],
         name="weights",
         dtype=dtypes.float32)
     conv = nn.conv2d(
         input=a,
         filter=e,
         strides=[1, 2, 2, 1],
         padding="SAME",
         name="conv")
     b = cop.constant(
         [4., 1.5, 2., 3., 5., 7.], name="bias", dtype=dtypes.float32)
     t = nn.bias_add(conv, b, name="biasAdd")
     relu = nn.relu(t, "relu")
     idty = aops.identity(relu, "ID")
     v = nn_ops.max_pool(
         idty, [1, 2, 2, 1], [1, 2, 2, 1], "VALID", name="max_pool")
     aops.squeeze(v, name="output")
   return g.as_graph_def()
开发者ID:ebrevdo,项目名称:tensorflow,代码行数:25,代码来源:tf_trt_integration_test.py

示例14: create_test_network

def create_test_network():
  """Convolutional neural network for test.

  Returns:
    g: Tensorflow graph object (Graph proto).
  """
  g = ops.Graph()
  with g.as_default():
    # An input test image with unknown spatial resolution.
    x = array_ops.placeholder(
        dtypes.float32, (None, None, None, 1), name='input_image')
    # Left branch before first addition.
    l1 = slim.conv2d(x, 1, [1, 1], stride=4, scope='L1', padding='VALID')
    # Right branch before first addition.
    l2_pad = array_ops.pad(x, [[0, 0], [1, 0], [1, 0], [0, 0]], name='L2_pad')
    l2 = slim.conv2d(l2_pad, 1, [3, 3], stride=2, scope='L2', padding='VALID')
    l3 = slim.max_pool2d(l2, [3, 3], stride=2, scope='L3', padding='SAME')
    # First addition.
    l4 = nn.relu(l1 + l3, name='L4_relu')
    # Left branch after first addition.
    l5 = slim.conv2d(l4, 1, [1, 1], stride=2, scope='L5', padding='SAME')
    # Right branch after first addition.
    l6 = slim.conv2d(l4, 1, [3, 3], stride=2, scope='L6', padding='SAME')
    # Final addition.
    gen_math_ops.add(l5, l6, name='L7_add')

  return g
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:27,代码来源:graph_compute_order_test.py

示例15: GetParams

 def GetParams(self):
   """Single vgg layer test in TF-TRT conversion."""
   dtype = dtypes.float32
   input_name = "input"
   input_dims = [5, 8, 8, 2]
   output_name = "output"
   g = ops.Graph()
   with g.as_default():
     x = array_ops.placeholder(dtype=dtype, shape=input_dims, name=input_name)
     x, _, _ = nn_impl.fused_batch_norm(
         x, [1.0, 1.0], [0.0, 0.0],
         mean=[0.5, 0.5],
         variance=[1.0, 1.0],
         is_training=False)
     e = constant_op.constant(
         np.random.randn(1, 1, 2, 6), name="weights", dtype=dtype)
     conv = nn.conv2d(
         input=x, filter=e, strides=[1, 2, 2, 1], padding="SAME", name="conv")
     b = constant_op.constant(np.random.randn(6), name="bias", dtype=dtype)
     t = nn.bias_add(conv, b, name="biasAdd")
     relu = nn.relu(t, "relu")
     idty = array_ops.identity(relu, "ID")
     v = nn_ops.max_pool(
         idty, [1, 2, 2, 1], [1, 2, 2, 1], "VALID", name="max_pool")
     array_ops.squeeze(v, name=output_name)
   return trt_test.TfTrtIntegrationTestParams(
       gdef=g.as_graph_def(),
       input_names=[input_name],
       input_dims=[input_dims],
       output_names=[output_name],
       expected_output_dims=[(5, 2, 2, 6)])
开发者ID:aeverall,项目名称:tensorflow,代码行数:31,代码来源:vgg_block_test.py


注:本文中的tensorflow.python.ops.nn.relu函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。