当前位置: 首页>>代码示例>>Python>>正文


Python nn.conv2d函数代码示例

本文整理汇总了Python中tensorflow.python.ops.nn.conv2d函数的典型用法代码示例。如果您正苦于以下问题:Python conv2d函数的具体用法?Python conv2d怎么用?Python conv2d使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了conv2d函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: GetParams

 def GetParams(self):
   """Test for Constant broadcasting in TF-TRT."""
   dtype = dtypes.float32
   input_name = 'input'
   input_dims = [5, 12, 12, 2]
   g = ops.Graph()
   with g.as_default():
     x = array_ops.placeholder(dtype=dtype, shape=input_dims, name=input_name)
     filt1 = constant_op.constant(
         0.3, shape=(3, 3, 2, 1), dtype=dtype, name='filt1')
     y1 = nn.conv2d(x, filt1, strides=[1, 1, 1, 1], padding='SAME', name='y1')
     z1 = nn.relu(y1, name='z1')
     filt2 = constant_op.constant(
         np.random.randn(9), shape=(3, 3, 1, 1), dtype=dtype, name='filt2')
     y2 = nn.conv2d(z1, filt2, strides=[1, 1, 1, 1], padding='SAME', name='y2')
     z2 = nn.relu(y2, name='z')
     filt3 = constant_op.constant(
         np.random.randn(3, 3, 1, 1),
         shape=(3, 3, 1, 1),
         dtype=dtype,
         name='filt3')
     y3 = nn.conv2d(z2, filt3, strides=[1, 1, 1, 1], padding='SAME', name='y3')
     nn.relu(y3, name='output')
   return trt_test.TfTrtIntegrationTestParams(
       gdef=g.as_graph_def(),
       input_names=[input_name],
       input_dims=[input_dims],
       num_expected_engines=1,
       expected_output_dims=(5, 12, 12, 1),
       allclose_atol=1.e-02,
       allclose_rtol=1.e-02)
开发者ID:StephenOman,项目名称:tensorflow,代码行数:31,代码来源:const_broadcast_test.py

示例2: GetParams

 def GetParams(self):
   """Testing conversion of BatchMatMul in TF-TRT conversion."""
   dtype = dtypes.float32
   input_name = "input"
   input_dims = [2, 15, 15, 3]
   g = ops.Graph()
   with g.as_default():
     inp = array_ops.placeholder(
         dtype=dtype, shape=[None] + input_dims[1:], name=input_name)
     with g.device("/GPU:0"):
       e1 = constant_op.constant(
           np.random.randn(1, 1, 3, 5), name="kernel_1", dtype=dtype)
       e2 = constant_op.constant(
           np.random.randn(1, 1, 5, 10), name="kernel_2", dtype=dtype)
       conv = nn.conv2d(
           input=inp,
           filter=e1,
           strides=[1, 1, 1, 1],
           padding="VALID",
           name="conv")
       out = nn.conv2d(
           input=conv,
           filter=e2,
           strides=[1, 1, 1, 1],
           padding="VALID",
           name="conv_2")
     array_ops.squeeze(out, name=self.output_name)
   return trt_test.TfTrtIntegrationTestParams(
       gdef=g.as_graph_def(),
       input_names=[input_name],
       input_dims=[input_dims],
       expected_engines=["my_trt_op_0"],
       expected_output_dims=(2, 15, 15, 10),
       allclose_atol=1.e-02,
       allclose_rtol=1.e-02)
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:35,代码来源:memory_alignment_test.py

示例3: GetMultiEngineGraphDef

def GetMultiEngineGraphDef(dtype=dtypes.float32):
  """Create a graph containing multiple segment."""
  g = ops.Graph()
  with g.as_default():
    inp = array_ops.placeholder(
        dtype=dtype, shape=[None] + INPUT_DIMS[1:], name=INPUT_NAME)
    with g.device("/GPU:0"):
      conv_filter = constant_op.constant(
          [[[[1., 0.5, 4., 6., 0.5, 1.], [1., 0.5, 1., 1., 0.5, 1.]]]],
          name="weights",
          dtype=dtype)
      conv = nn.conv2d(
          input=inp,
          filter=conv_filter,
          strides=[1, 2, 2, 1],
          padding="SAME",
          name="conv")
      c1 = constant_op.constant(
          np.random.randn(INPUT_DIMS[0], 12, 12, 6), dtype=dtype)
      p = conv * c1
      c2 = constant_op.constant(
          np.random.randn(INPUT_DIMS[0], 12, 12, 6), dtype=dtype)
      q = conv / c2

      edge = math_ops.sin(q)
      edge /= edge
      r = edge + edge

      p -= edge
      q *= edge
      s = p + q
      s -= r
    array_ops.squeeze(s, name=OUTPUT_NAME)
  return g.as_graph_def()
开发者ID:Eagle732,项目名称:tensorflow,代码行数:34,代码来源:tf_trt_integration_test.py

示例4: _annotated_graph

 def _annotated_graph(self):
   graph = ops.Graph()
   with graph.as_default():
     random_seed.set_random_seed(2)
     current_activation = variable_scope.get_variable(
         name='start', shape=[1, 2, 2, 5])
     conv_filter = variable_scope.get_variable(
         name='filter', shape=[5, 5, 5, 5])
     for layer_number in range(3):
       with variable_scope.variable_scope('layer_{}'.format(layer_number)):
         after_conv = nn.conv2d(current_activation, conv_filter, [1, 1, 1, 1],
                                'SAME')
         current_activation = 2. * after_conv
         current_activation.op._set_attr(
             '_recompute_hint',
             # The value of the attribute does not matter; just that the key
             # exists in the op's attributes.
             attr_value_pb2.AttrValue(i=1))
         current_activation += 5.
         current_activation.op._set_attr(
             '_recompute_hint', attr_value_pb2.AttrValue(i=0))
         current_activation = nn.relu(current_activation)
         current_activation.op._set_attr(
             '_recompute_hint', attr_value_pb2.AttrValue(i=1))
     loss = math_ops.reduce_mean(current_activation)
     optimizer = train.AdamOptimizer(0.001)
     train_op = optimizer.minimize(loss)
     init_op = variables.global_variables_initializer()
   return graph, init_op, train_op
开发者ID:aeverall,项目名称:tensorflow,代码行数:29,代码来源:memory_optimizer_test.py

示例5: GetParams

 def GetParams(self):
   """Single vgg layer test in TF-TRT conversion."""
   dtype = dtypes.float32
   input_name = "input"
   input_dims = [5, 8, 8, 2]
   output_name = "output"
   g = ops.Graph()
   with g.as_default():
     x = array_ops.placeholder(dtype=dtype, shape=input_dims, name=input_name)
     x, _, _ = nn_impl.fused_batch_norm(
         x, [1.0, 1.0], [0.0, 0.0],
         mean=[0.5, 0.5],
         variance=[1.0, 1.0],
         is_training=False)
     e = constant_op.constant(
         np.random.randn(1, 1, 2, 6), name="weights", dtype=dtype)
     conv = nn.conv2d(
         input=x, filter=e, strides=[1, 2, 2, 1], padding="SAME", name="conv")
     b = constant_op.constant(np.random.randn(6), name="bias", dtype=dtype)
     t = nn.bias_add(conv, b, name="biasAdd")
     relu = nn.relu(t, "relu")
     idty = array_ops.identity(relu, "ID")
     v = nn_ops.max_pool(
         idty, [1, 2, 2, 1], [1, 2, 2, 1], "VALID", name="max_pool")
     array_ops.squeeze(v, name=output_name)
   return trt_test.TfTrtIntegrationTestParams(
       gdef=g.as_graph_def(),
       input_names=[input_name],
       input_dims=[input_dims],
       output_names=[output_name],
       expected_output_dims=[(5, 2, 2, 6)])
开发者ID:aeverall,项目名称:tensorflow,代码行数:31,代码来源:vgg_block_test.py

示例6: GetParams

 def GetParams(self):
   dtype = dtypes.float32
   input_name = "input"
   input_dims = [[[1, 10, 10, 2]], [[2, 10, 10, 2]], [[4, 10, 10, 2]],
                 [[2, 10, 10, 2]]]
   expected_output_dims = [[[1, 10, 10, 1]], [[2, 10, 10, 1]], [[4, 10, 10,
                                                                 1]],
                           [[2, 10, 10, 1]]]
   output_name = "output"
   g = ops.Graph()
   with g.as_default():
     x = array_ops.placeholder(
         dtype=dtype, shape=[None, 10, 10, 2], name=input_name)
     conv_filter = constant_op.constant(
         np.random.randn(3, 3, 2, 1), dtype=dtypes.float32)
     x = nn.conv2d(
         input=x,
         filter=conv_filter,
         strides=[1, 1, 1, 1],
         padding="SAME",
         name="conv")
     bias = constant_op.constant(
         np.random.randn(1, 10, 10, 1), dtype=dtypes.float32)
     x = math_ops.add(x, bias)
     x = nn.relu(x)
     x = array_ops.identity(x, name="output")
   return trt_test.TfTrtIntegrationTestParams(
       gdef=g.as_graph_def(),
       input_names=[input_name],
       input_dims=input_dims,
       output_names=[output_name],
       expected_output_dims=expected_output_dims)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:32,代码来源:lru_cache_test.py

示例7: get_simple_graph_def

 def get_simple_graph_def(self):
   """Create a simple graph and return its graph_def."""
   g = ops.Graph()
   with g.as_default():
     a = aops.placeholder(
         dtype=dtypes.float32, shape=(None, 24, 24, 2), name="input")
     e = cop.constant(
         [[[[1., 0.5, 4., 6., 0.5, 1.], [1., 0.5, 1., 1., 0.5, 1.]]]],
         name="weights",
         dtype=dtypes.float32)
     conv = nn.conv2d(
         input=a,
         filter=e,
         strides=[1, 2, 2, 1],
         padding="SAME",
         name="conv")
     b = cop.constant(
         [4., 1.5, 2., 3., 5., 7.], name="bias", dtype=dtypes.float32)
     t = nn.bias_add(conv, b, name="biasAdd")
     relu = nn.relu(t, "relu")
     idty = aops.identity(relu, "ID")
     v = nn_ops.max_pool(
         idty, [1, 2, 2, 1], [1, 2, 2, 1], "VALID", name="max_pool")
     aops.squeeze(v, name="output")
   return g.as_graph_def()
开发者ID:ebrevdo,项目名称:tensorflow,代码行数:25,代码来源:tf_trt_integration_test.py

示例8: GetParams

 def GetParams(self):
   """Neighboring node wiring tests in TF-TRT conversion."""
   dtype = dtypes.float32
   input_name = "input"
   input_dims = [2, 3, 7, 5]
   output_name = "output"
   g = ops.Graph()
   with g.as_default():
     x = array_ops.placeholder(dtype=dtype, shape=input_dims, name=input_name)
     e = constant_op.constant(
         np.random.normal(.3, 0.05, [3, 2, 3, 4]), name="weights", dtype=dtype)
     conv = nn.conv2d(
         input=x,
         filter=e,
         data_format="NCHW",
         strides=[1, 1, 1, 1],
         padding="VALID",
         name="conv")
     b = constant_op.constant(
         np.random.normal(1.0, 1.0, [1, 4, 1, 1]), name="bias", dtype=dtype)
     t = math_ops.mul(conv, b, name="mul")
     e = self.trt_incompatible_op(conv, name="incompatible")
     t = math_ops.sub(t, e, name="sub")
     array_ops.squeeze(t, name=output_name)
   return trt_test.TfTrtIntegrationTestParams(
       gdef=g.as_graph_def(),
       input_names=[input_name],
       input_dims=[input_dims],
       output_names=[output_name],
       expected_output_dims=[(2, 4, 5, 4)])
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:30,代码来源:neighboring_engine_test.py

示例9: GetParams

 def GetParams(self):
   """Neighboring node wiring tests in TF-TRT conversion."""
   dtype = dtypes.float32
   input_name = "input"
   input_dims = [2, 3, 7, 5]
   g = ops.Graph()
   with g.as_default():
     x = array_ops.placeholder(dtype=dtype, shape=input_dims, name=input_name)
     e = constant_op.constant(
         np.random.normal(.3, 0.05, [3, 2, 3, 4]), name="weights", dtype=dtype)
     conv = nn.conv2d(
         input=x,
         filter=e,
         data_format="NCHW",
         strides=[1, 1, 1, 1],
         padding="VALID",
         name="conv")
     b = constant_op.constant(
         np.random.normal(1.0, 1.0, [1, 4, 1, 1]), name="bias", dtype=dtype)
     t = conv * b
     e = gen_math_ops.tan(conv)
     t = t - e
     array_ops.squeeze(t, name=self.output_name)
   return trt_test.TfTrtIntegrationTestParams(
       gdef=g.as_graph_def(),
       input_names=[input_name],
       input_dims=[input_dims],
       num_expected_engines=2,
       expected_output_dims=(2, 4, 5, 4),
       allclose_atol=1.e-03,
       allclose_rtol=1.e-03)
开发者ID:StephenOman,项目名称:tensorflow,代码行数:31,代码来源:neighboring_engine_test.py

示例10: GetSingleEngineGraphDef

def GetSingleEngineGraphDef(dtype=dtypes.float32):
  """Create a graph containing single segment."""
  g = ops.Graph()
  with g.as_default():
    inp = array_ops.placeholder(
        dtype=dtype, shape=[None] + INPUT_DIMS[1:], name=INPUT_NAME)
    with g.device("/GPU:0"):
      conv_filter = constant_op.constant(
          [[[[1., 0.5, 4., 6., 0.5, 1.], [1., 0.5, 1., 1., 0.5, 1.]]]],
          name="weights",
          dtype=dtype)
      conv = nn.conv2d(
          input=inp,
          filter=conv_filter,
          strides=[1, 2, 2, 1],
          padding="SAME",
          name="conv")
      bias = constant_op.constant(
          [4., 1.5, 2., 3., 5., 7.], name="bias", dtype=dtype)
      added = nn.bias_add(conv, bias, name="bias_add")
      relu = nn.relu(added, "relu")
      identity = array_ops.identity(relu, "identity")
      pool = nn_ops.max_pool(
          identity, [1, 2, 2, 1], [1, 2, 2, 1], "VALID", name="max_pool")
    array_ops.squeeze(pool, name=OUTPUT_NAME)
  return g.as_graph_def()
开发者ID:Eagle732,项目名称:tensorflow,代码行数:26,代码来源:tf_trt_integration_test.py

示例11: GetParams

  def GetParams(self):
    # TODO(laigd): we should test the following cases:
    # - batch size is not changed, other dims are changing
    # - batch size is decreasing, other dims are identical
    # - batch size is decreasing, other dims are changing
    # - batch size is increasing, other dims are identical
    # - batch size is increasing, other dims are changing
    input_dims = [[[1, 5, 5, 1]], [[10, 5, 5, 1]], [[3, 5, 5, 1]],
                  [[1, 5, 5, 1]], [[1, 3, 1, 1]], [[2, 9, 9, 1]],
                  [[1, 224, 224, 1]], [[1, 128, 224, 1]]]
    expected_output_dims = input_dims

    g = ops.Graph()
    with g.as_default():
      x = array_ops.placeholder(
          shape=(None, None, None, 1), dtype=dtypes.float32, name="input")
      conv_filter1 = constant_op.constant(
          np.ones([3, 3, 1, 8]), name="weights1", dtype=dtypes.float32)
      bias1 = constant_op.constant(np.random.randn(8), dtype=dtypes.float32)
      x = nn.conv2d(
          input=x,
          filter=conv_filter1,
          strides=[1, 1, 1, 1],
          padding="SAME",
          name="conv")
      x = nn.bias_add(x, bias1)
      x = nn.relu(x)
      conv_filter2 = constant_op.constant(
          np.ones([3, 3, 8, 1]), name="weights2", dtype=dtypes.float32)
      bias2 = constant_op.constant(np.random.randn(1), dtype=dtypes.float32)
      x = nn.conv2d(
          input=x,
          filter=conv_filter2,
          strides=[1, 1, 1, 1],
          padding="SAME",
          name="conv")
      x = nn.bias_add(x, bias2)
      x = array_ops.identity(x, name="output")

    return trt_test.TfTrtIntegrationTestParams(
        gdef=g.as_graph_def(),
        input_names=["input"],
        input_dims=input_dims,
        output_names=["output"],
        expected_output_dims=expected_output_dims)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:45,代码来源:dynamic_input_shapes_test.py

示例12: GetParams

  def GetParams(self):
    """Create a graph containing multiple segment."""
    # TODO(aaroey): test graph with different dtypes.
    dtype = dtypes.float32
    input_name = "input"
    input_dims = [100, 24, 24, 2]
    g = ops.Graph()
    with g.as_default():
      inp = array_ops.placeholder(
          dtype=dtype, shape=[None] + input_dims[1:], name=input_name)
      with g.device("/GPU:0"):
        conv_filter = constant_op.constant(
            [[[[1., 0.5, 4., 6., 0.5, 1.], [1., 0.5, 1., 1., 0.5, 1.]]]],
            name="weights",
            dtype=dtype)
        conv = nn.conv2d(
            input=inp,
            filter=conv_filter,
            strides=[1, 2, 2, 1],
            padding="SAME",
            name="conv")
        c1 = constant_op.constant(
            np.random.randn(input_dims[0], 12, 12, 6), dtype=dtype, name="c1")
        p = math_ops.mul(conv, c1, name="mul")
        c2 = constant_op.constant(
            np.random.randn(input_dims[0], 12, 12, 6), dtype=dtype, name="c2")
        q = math_ops.div(conv, c2, name="div")

        edge = self.trt_incompatible_op(q, name="incompatible")
        edge = math_ops.div(edge, edge, name="div1")
        r = math_ops.add(edge, edge, name="add")

        p = math_ops.sub(p, edge, name="sub")
        q = math_ops.mul(q, edge, name="mul1")
        s = math_ops.add(p, q, name="add1")
        s = math_ops.sub(s, r, name="sub1")
      array_ops.squeeze(s, name=self.output_name)
    return trt_test.TfTrtIntegrationTestParams(
        gdef=g.as_graph_def(),
        input_names=[input_name],
        input_dims=[input_dims],
        # TODO(aaroey): LayoutOptimizer adds additional nodes to the graph which
        # breaks the connection check, fix it.
        # - my_trt_op_0 should have ["mul", "sub", "div1", "mul1", "add1",
        #   "add", "sub1"];
        # - my_trt_op_1 should have ["weights","conv", "div"]
        expected_engines=["my_trt_op_0", "my_trt_op_1"],
        expected_output_dims=(100, 12, 12, 6),
        allclose_atol=1.e-03,
        allclose_rtol=1.e-03)
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:50,代码来源:base_test.py

示例13: GetParams

  def GetParams(self):
    """Test for multi connection neighboring nodes wiring tests in TF-TRT."""
    dtype = dtypes.float32
    input_name = "input"
    input_dims = [2, 3, 7, 5]
    g = ops.Graph()
    with g.as_default():
      x = array_ops.placeholder(dtype=dtype, shape=input_dims, name=input_name)
      e = constant_op.constant(
          np.random.normal(.05, .005, [3, 2, 3, 4]),
          name="weights",
          dtype=dtype)
      conv = nn.conv2d(
          input=x,
          filter=e,
          data_format="NCHW",
          strides=[1, 1, 1, 1],
          padding="VALID",
          name="conv")
      b = constant_op.constant(
          np.random.normal(2.0, 1.0, [1, 4, 1, 1]), name="bias", dtype=dtype)
      t = conv + b

      b = constant_op.constant(
          np.random.normal(5.0, 1.0, [1, 4, 1, 1]), name="bias", dtype=dtype)
      q = conv - b
      edge = math_ops.sigmoid(q)

      b = constant_op.constant(
          np.random.normal(5.0, 1.0, [1, 4, 1, 1]), name="bias", dtype=dtype)
      d = b + conv
      edge3 = math_ops.sigmoid(d)

      edge1 = gen_math_ops.tan(conv)
      t = t - edge1
      q = q + edge
      t = t + q
      t = t + d
      t = t - edge3
      array_ops.squeeze(t, name=self.output_name)
    return trt_test.TfTrtIntegrationTestParams(
        gdef=g.as_graph_def(),
        input_names=[input_name],
        input_dims=[input_dims],
        expected_engines=["my_trt_op_0", "my_trt_op_1"],
        expected_output_dims=(2, 4, 5, 4),
        allclose_atol=1.e-03,
        allclose_rtol=1.e-03)
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:48,代码来源:multi_connection_neighbor_engine_test.py

示例14: GetParams

  def GetParams(self):
    """Test for multi connection neighboring nodes wiring tests in TF-TRT."""
    dtype = dtypes.float32
    input_name = "input"
    input_dims = [2, 3, 7, 5]
    output_name = "output"
    g = ops.Graph()
    with g.as_default():
      x = array_ops.placeholder(dtype=dtype, shape=input_dims, name=input_name)
      e = constant_op.constant(
          np.random.normal(.05, .005, [3, 2, 3, 4]),
          name="weights",
          dtype=dtype)
      conv = nn.conv2d(
          input=x,
          filter=e,
          data_format="NCHW",
          strides=[1, 1, 1, 1],
          padding="VALID",
          name="conv")
      b = constant_op.constant(
          np.random.normal(2.0, 1.0, [1, 4, 1, 1]), name="bias", dtype=dtype)
      t = conv + b

      b = constant_op.constant(
          np.random.normal(5.0, 1.0, [1, 4, 1, 1]), name="bias", dtype=dtype)
      q = conv - b
      edge = self.trt_incompatible_op(q)

      b = constant_op.constant(
          np.random.normal(5.0, 1.0, [1, 4, 1, 1]), name="bias", dtype=dtype)
      d = b + conv
      edge3 = self.trt_incompatible_op(d)

      edge1 = self.trt_incompatible_op(conv)
      t = t - edge1
      q = q + edge
      t = t + q
      t = t + d
      t = t - edge3
      array_ops.squeeze(t, name=output_name)
    return trt_test.TfTrtIntegrationTestParams(
        gdef=g.as_graph_def(),
        input_names=[input_name],
        input_dims=[[input_dims]],
        output_names=[output_name],
        expected_output_dims=[[[2, 4, 5, 4]]])
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:47,代码来源:multi_connection_neighbor_engine_test.py

示例15: conv2d

def conv2d(tensor_in,
           n_filters,
           filter_shape,
           strides=None,
           padding='SAME',
           bias=True,
           activation=None,
           batch_norm=False):
  """Creates 2D convolutional subgraph with bank of filters.

  Uses tf.nn.conv2d under the hood.
  Creates a filter bank:
    [filter_shape[0], filter_shape[1], tensor_in[3], n_filters]
  and applies it to the input tensor.

  Args:
    tensor_in: input Tensor, 4D shape:
      [batch, in_height, in_width, in_depth].
    n_filters: number of filters in the bank.
    filter_shape: Shape of filters, a list of ints, 1-D of length 2.
    strides: A list of ints, 1-D of length 4. The stride of the sliding
      window for each dimension of input.
    padding: A string: 'SAME' or 'VALID'. The type of padding algorthim to use.
      See the [comment here]
      (https://www.tensorflow.org/api_docs/python/nn.html#convolution)
    bias: Boolean, if to add bias.
    activation: Activation Op, optional. If provided applied on the output.
    batch_norm: Whether to apply batch normalization.

  Returns:
    A Tensor with resulting convolution.
  """
  with vs.variable_scope('convolution'):
    if strides is None:
      strides = [1, 1, 1, 1]
    input_shape = tensor_in.get_shape()
    filter_shape = list(filter_shape) + [input_shape[3], n_filters]
    filters = vs.get_variable('filters', filter_shape, dtypes.float32)
    output = nn.conv2d(tensor_in, filters, strides, padding)
    if bias:
      bias_var = vs.get_variable('bias', [1, 1, 1, n_filters], dtypes.float32)
      output += bias_var
    if batch_norm:
      output = batch_normalize(output, convnet=True)
    if activation:
      output = activation(output)
    return output
开发者ID:0ruben,项目名称:tensorflow,代码行数:47,代码来源:conv_ops.py


注:本文中的tensorflow.python.ops.nn.conv2d函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。