当前位置: 首页>>代码示例>>Python>>正文


Python metrics.accuracy函数代码示例

本文整理汇总了Python中tensorflow.python.ops.metrics.accuracy函数的典型用法代码示例。如果您正苦于以下问题:Python accuracy函数的具体用法?Python accuracy怎么用?Python accuracy使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了accuracy函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _create_names_to_metrics

  def _create_names_to_metrics(self, predictions, labels):
    accuracy0, update_op0 = metrics.accuracy(
        labels=labels, predictions=predictions)
    accuracy1, update_op1 = metrics.accuracy(
        labels=labels, predictions=predictions + 1)

    names_to_values = {'Accuracy': accuracy0, 'Another_accuracy': accuracy1}
    names_to_updates = {'Accuracy': update_op0, 'Another_accuracy': update_op1}
    return names_to_values, names_to_updates
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:9,代码来源:evaluation_test.py

示例2: model_fn

  def model_fn(self, mode, features, labels, params):
    c = variable_scope.get_variable(
        'c',
        initializer=constant_op.constant(10, dtype=dtypes.float64),
        dtype=dtypes.float64)

    predictions = math_ops.multiply(features, c)

    loss = None
    if mode is not model_fn_lib.ModeKeys.PREDICT:
      loss = losses.absolute_difference(
          labels=labels,
          predictions=predictions,
          reduction=losses.Reduction.SUM)
      loss = math_ops.reduce_sum(loss)

    metrics = {
        'accuracy': metrics_lib.accuracy(labels, predictions),
        'auc': metrics_lib.auc(labels, predictions)
    }

    return model_fn_lib.EstimatorSpec(
        mode=mode,
        loss=loss,
        eval_metric_ops=metrics,
        predictions={'probabilities': predictions},
        train_op=control_flow_ops.no_op())  # This train_op isn't actually used.
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:27,代码来源:replicate_model_fn_test.py

示例3: testWithEpochLimit

  def testWithEpochLimit(self):
    predictions_limited = input.limit_epochs(self._predictions, num_epochs=1)
    labels_limited = input.limit_epochs(self._labels, num_epochs=1)

    value_op, update_op = metrics.accuracy(
        labels=labels_limited, predictions=predictions_limited)

    init_op = control_flow_ops.group(variables.global_variables_initializer(),
                                     variables.local_variables_initializer())
    # Create checkpoint and log directories:
    chkpt_dir = os.path.join(self.get_temp_dir(), 'tmp_logs/')
    gfile.MakeDirs(chkpt_dir)
    logdir = os.path.join(self.get_temp_dir(), 'tmp_logs2/')
    gfile.MakeDirs(logdir)

    # Save initialized variables to a checkpoint directory:
    saver = saver_lib.Saver()
    with self.test_session() as sess:
      init_op.run()
      saver.save(sess, os.path.join(chkpt_dir, 'chkpt'))

    # Now, run the evaluation loop:
    accuracy_value = evaluation.evaluation_loop(
        '', chkpt_dir, logdir, eval_op=update_op, final_op=value_op,
        max_number_of_evaluations=1, num_evals=10000)
    self.assertAlmostEqual(accuracy_value, self._expected_accuracy)
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:26,代码来源:evaluation_test.py

示例4: _eval_metric_ops

 def _eval_metric_ops(self, labels, class_ids, weights, weighted_sum_loss,
                      example_weight_sum):
   """Returns the Eval metric ops."""
   with ops.name_scope(
       None, 'metrics',
       (labels, class_ids, weights, weighted_sum_loss, example_weight_sum)):
     keys = metric_keys.MetricKeys
     metric_ops = {
         # Estimator already adds a metric for loss.
         # TODO(xiejw): Any other metrics?
         _summary_key(self._name, keys.LOSS_MEAN):
             metrics_lib.mean(
                 # Both values and weights here are reduced, scalar Tensors.
                 # values is the actual mean we want -- weights represents the
                 # total weight of the batch and is needed to calculate
                 # update_op over many batches.
                 values=(weighted_sum_loss / example_weight_sum),
                 weights=example_weight_sum,
                 name=keys.LOSS_MEAN),
         _summary_key(self._name, keys.ACCURACY):
             metrics_lib.accuracy(
                 labels=labels,
                 predictions=class_ids,
                 weights=weights,
                 name=keys.ACCURACY),
     }
   return metric_ops
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:27,代码来源:head.py

示例5: testEvaluateWithFiniteInputs

  def testEvaluateWithFiniteInputs(self):
    checkpoint_dir = os.path.join(self.get_temp_dir(),
                                  'evaluate_with_finite_inputs')

    # Train a Model to completion:
    self._train_model(checkpoint_dir, num_steps=300)

    # Run evaluation. Inputs are fed through input producer for one epoch.
    all_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
    all_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

    single_input, single_label = training.slice_input_producer(
        [all_inputs, all_labels], num_epochs=1)
    inputs, labels = training.batch([single_input, single_label], batch_size=6,
                                    allow_smaller_final_batch=True)

    logits = logistic_classifier(inputs)
    predictions = math_ops.round(logits)

    accuracy, update_op = metrics.accuracy(
        predictions=predictions, labels=labels)

    checkpoint_path = saver.latest_checkpoint(checkpoint_dir)

    final_ops_values = evaluation._evaluate_once(
        checkpoint_path=checkpoint_path,
        eval_ops=update_op,
        final_ops={'accuracy': accuracy,
                   'eval_steps': evaluation._get_or_create_eval_step()},
        hooks=[evaluation._StopAfterNEvalsHook(None),])
    self.assertTrue(final_ops_values['accuracy'] > .99)
    # Runs evaluation for 4 iterations. First 2 evaluate full batch of 6 inputs
    # each; the 3rd iter evaluates the remaining 4 inputs, and the last one
    # triggers an error which stops evaluation.
    self.assertEqual(final_ops_values['eval_steps'], 4)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:35,代码来源:evaluation_test.py

示例6: _ModelFn

    def _ModelFn(features, labels, mode):
      if is_training:
        logits_out = self._BuildGraph(features)
      else:
        graph_def = self._GetGraphDef(use_trt, batch_size, model_dir)
        logits_out = importer.import_graph_def(
            graph_def,
            input_map={INPUT_NODE_NAME: features},
            return_elements=[OUTPUT_NODE_NAME + ':0'],
            name='')[0]

      loss = losses.sparse_softmax_cross_entropy(
          labels=labels, logits=logits_out)
      summary.scalar('loss', loss)

      classes_out = math_ops.argmax(logits_out, axis=1, name='classes_out')
      accuracy = metrics.accuracy(
          labels=labels, predictions=classes_out, name='acc_op')
      summary.scalar('accuracy', accuracy[1])

      if mode == ModeKeys.EVAL:
        return EstimatorSpec(
            mode, loss=loss, eval_metric_ops={'accuracy': accuracy})
      elif mode == ModeKeys.TRAIN:
        optimizer = AdamOptimizer(learning_rate=1e-2)
        train_op = optimizer.minimize(loss, global_step=get_global_step())
        return EstimatorSpec(mode, loss=loss, train_op=train_op)
开发者ID:kylin9872,项目名称:tensorflow,代码行数:27,代码来源:quantization_mnist_test.py

示例7: testAdditionalHooks

  def testAdditionalHooks(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
    log_dir = os.path.join(self.get_temp_dir(), 'log_dir1/')

    # First, save out the current model to a checkpoint:
    self._prepareCheckpoint(checkpoint_path)

    # Next, determine the metric to evaluate:
    value_op, update_op = metrics.accuracy(
        labels=self._labels, predictions=self._predictions)

    dumping_root = os.path.join(self.get_temp_dir(), 'tfdbg_dump_dir')
    dumping_hook = hooks.DumpingDebugHook(dumping_root, log_usage=False)
    try:
      # Run the evaluation and verify the results:
      accuracy_value = evaluation.evaluate_once(
          '', checkpoint_path, log_dir, eval_op=update_op, final_op=value_op,
          hooks=[dumping_hook])
      self.assertAlmostEqual(accuracy_value, self._expected_accuracy)

      dump = debug_data.DebugDumpDir(
          glob.glob(os.path.join(dumping_root, 'run_*'))[0])
      # Here we simply assert that the dumped data has been loaded and is
      # non-empty. We do not care about the detailed model-internal tensors or
      # their values.
      self.assertTrue(dump.dumped_tensor_data)
    finally:
      if os.path.isdir(dumping_root):
        shutil.rmtree(dumping_root)
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:29,代码来源:evaluation_test.py

示例8: _accuracy_at_threshold

def _accuracy_at_threshold(labels, predictions, weights, threshold, name=None):
  with ops.name_scope(
      name, 'accuracy_at_%s' % threshold,
      (predictions, labels, weights, threshold)) as scope:
    threshold_predictions = math_ops.to_float(
        math_ops.greater_equal(predictions, threshold))
    return metrics_lib.accuracy(
        labels=labels, predictions=threshold_predictions, weights=weights,
        name=scope)
开发者ID:vaccine,项目名称:tensorflow,代码行数:9,代码来源:head.py

示例9: create_eval_metrics

  def create_eval_metrics(self, noise):
    predictions = np.array([0.1, 0.2, 0.3, 0.6 + noise])
    labels = np.array([0.1, 0.2, 0.3, 0.6])

    metrics = {
        'accuracy': metrics_lib.accuracy(labels, predictions),
        'auc': metrics_lib.auc(labels, predictions)
    }
    return metrics
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:9,代码来源:replicate_model_fn_test.py

示例10: testRestoredModelPerformance

  def testRestoredModelPerformance(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
    log_dir = os.path.join(self.get_temp_dir(), 'log_dir1/')

    # First, save out the current model to a checkpoint:
    self._prepareCheckpoint(checkpoint_path)

    # Next, determine the metric to evaluate:
    value_op, update_op = metrics.accuracy(
        labels=self._labels, predictions=self._predictions)

    # Run the evaluation and verify the results:
    accuracy_value = evaluation.evaluate_once(
        '', checkpoint_path, log_dir, eval_op=update_op, final_op=value_op)
    self.assertAlmostEqual(accuracy_value, self._expected_accuracy)
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:15,代码来源:evaluation_test.py

示例11: testFinalOpsOnEvaluationLoop

  def testFinalOpsOnEvaluationLoop(self):
    value_op, update_op = metrics.accuracy(
        labels=self._labels, predictions=self._predictions)
    init_op = control_flow_ops.group(variables.global_variables_initializer(),
                                     variables.local_variables_initializer())
    # Create checkpoint and log directories:
    chkpt_dir = os.path.join(self.get_temp_dir(), 'tmp_logs/')
    gfile.MakeDirs(chkpt_dir)
    logdir = os.path.join(self.get_temp_dir(), 'tmp_logs2/')
    gfile.MakeDirs(logdir)

    # Save initialized variables to a checkpoint directory:
    saver = saver_lib.Saver()
    with self.test_session() as sess:
      init_op.run()
      saver.save(sess, os.path.join(chkpt_dir, 'chkpt'))

    class Object(object):

      def __init__(self):
        self.hook_was_run = False

    obj = Object()

    # Create a custom session run hook.
    class CustomHook(session_run_hook.SessionRunHook):

      def __init__(self, obj):
        self.obj = obj

      def end(self, session):
        self.obj.hook_was_run = True

    # Now, run the evaluation loop:
    accuracy_value = evaluation.evaluation_loop(
        '',
        chkpt_dir,
        logdir,
        eval_op=update_op,
        final_op=value_op,
        hooks=[CustomHook(obj)],
        max_number_of_evaluations=1)
    self.assertAlmostEqual(accuracy_value, self._expected_accuracy)

    # Validate that custom hook ran.
    self.assertTrue(obj.hook_was_run)
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:46,代码来源:evaluation_test.py

示例12: _eval_metric_ops

 def _eval_metric_ops(self, labels, probabilities, logits,
                      class_ids, weights, unweighted_loss):
   """Returns the Eval metric ops."""
   with ops.name_scope(
       None, 'metrics',
       (labels, probabilities, logits, class_ids, weights, unweighted_loss)):
     keys = metric_keys.MetricKeys
     metric_ops = {
         # Estimator already adds a metric for loss.
         # TODO(xiejw): Any other metrics?
         keys.LOSS_MEAN: metrics_lib.mean(
             unweighted_loss, weights=weights, name=keys.LOSS_MEAN),
         keys.ACCURACY: metrics_lib.accuracy(
             labels=labels, predictions=class_ids, weights=weights,
             name=keys.ACCURACY),
     }
   return metric_ops
开发者ID:vaccine,项目名称:tensorflow,代码行数:17,代码来源:head.py

示例13: testEvaluatePerfectModel

  def testEvaluatePerfectModel(self):
    checkpoint_dir = os.path.join(self.get_temp_dir(),
                                  'evaluate_perfect_model_once')

    # Train a Model to completion:
    self._train_model(checkpoint_dir, num_steps=300)

    # Run
    inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
    labels = constant_op.constant(self._labels, dtype=dtypes.float32)
    logits = logistic_classifier(inputs)
    predictions = math_ops.round(logits)

    accuracy, update_op = metrics.accuracy(
        predictions=predictions, labels=labels)

    checkpoint_path = saver.latest_checkpoint(checkpoint_dir)

    final_ops_values = evaluation._evaluate_once(
        checkpoint_path=checkpoint_path,
        eval_ops=update_op,
        final_ops={'accuracy': accuracy},
        hooks=[evaluation._StopAfterNEvalsHook(1),])
    self.assertTrue(final_ops_values['accuracy'] > .99)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:24,代码来源:evaluation_test.py

示例14: _accuracy

def _accuracy(predictions, targets, weights=None):
  return metrics.accuracy(
      labels=targets, predictions=predictions, weights=weights)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:3,代码来源:eval_metrics.py

示例15: _metric_fn

 def _metric_fn(x):
   labels = x["labels"]
   predictions = x["predictions"]
   return metrics.accuracy(labels, predictions)
开发者ID:AndreasGocht,项目名称:tensorflow,代码行数:4,代码来源:metrics_v1_test.py


注:本文中的tensorflow.python.ops.metrics.accuracy函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。