当前位置: 首页>>代码示例>>Python>>正文


Python math_ops.sin函数代码示例

本文整理汇总了Python中tensorflow.python.ops.math_ops.sin函数的典型用法代码示例。如果您正苦于以下问题:Python sin函数的具体用法?Python sin怎么用?Python sin使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了sin函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: GetMultiEngineGraphDef

def GetMultiEngineGraphDef(dtype=dtypes.float32):
  """Create a graph containing multiple segment."""
  g = ops.Graph()
  with g.as_default():
    inp = array_ops.placeholder(
        dtype=dtype, shape=[None] + INPUT_DIMS[1:], name=INPUT_NAME)
    with g.device("/GPU:0"):
      conv_filter = constant_op.constant(
          [[[[1., 0.5, 4., 6., 0.5, 1.], [1., 0.5, 1., 1., 0.5, 1.]]]],
          name="weights",
          dtype=dtype)
      conv = nn.conv2d(
          input=inp,
          filter=conv_filter,
          strides=[1, 2, 2, 1],
          padding="SAME",
          name="conv")
      c1 = constant_op.constant(
          np.random.randn(INPUT_DIMS[0], 12, 12, 6), dtype=dtype)
      p = conv * c1
      c2 = constant_op.constant(
          np.random.randn(INPUT_DIMS[0], 12, 12, 6), dtype=dtype)
      q = conv / c2

      edge = math_ops.sin(q)
      edge /= edge
      r = edge + edge

      p -= edge
      q *= edge
      s = p + q
      s -= r
    array_ops.squeeze(s, name=OUTPUT_NAME)
  return g.as_graph_def()
开发者ID:Eagle732,项目名称:tensorflow,代码行数:34,代码来源:tf_trt_integration_test.py

示例2: _CosGrad

def _CosGrad(op, grad):
  """Returns grad * -sin(x)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad.op]):
    if x.dtype.is_complex:
      x = math_ops.conj(x)
    return -grad * math_ops.sin(x)
开发者ID:0ruben,项目名称:tensorflow,代码行数:7,代码来源:math_grad.py

示例3: input_fn

 def input_fn():
   start = random_ops.random_uniform(
       (), minval=0, maxval=(np.pi * 2.0), dtype=dtypes.float32, seed=seed)
   sin_curves = math_ops.sin(
       math_ops.linspace(start, (sequence_length - 1) * increment,
                         sequence_length + 1))
   inputs = array_ops.slice(sin_curves, [0], [sequence_length])
   labels = array_ops.slice(sin_curves, [1], [sequence_length])
   return {'inputs': inputs}, labels
开发者ID:finardi,项目名称:tensorflow,代码行数:9,代码来源:state_saving_rnn_estimator_test.py

示例4: angles_to_projective_transforms

def angles_to_projective_transforms(angles,
                                    image_height,
                                    image_width,
                                    name=None):
  """Returns projective transform(s) for the given angle(s).

  Args:
    angles: A scalar angle to rotate all images by, or (for batches of images)
        a vector with an angle to rotate each image in the batch. The rank must
        be statically known (the shape is not `TensorShape(None)`.
    image_height: Height of the image(s) to be transformed.
    image_width: Width of the image(s) to be transformed.

  Returns:
    A tensor of shape (num_images, 8). Projective transforms which can be given
      to `tf.contrib.image.transform`.
  """
  with ops.name_scope(name, "angles_to_projective_transforms"):
    angle_or_angles = ops.convert_to_tensor(
        angles, name="angles", dtype=dtypes.float32)
    if len(angle_or_angles.get_shape()) == 0:  # pylint: disable=g-explicit-length-test
      angles = angle_or_angles[None]
    elif len(angle_or_angles.get_shape()) == 1:
      angles = angle_or_angles
    else:
      raise TypeError("Angles should have rank 0 or 1.")
    x_offset = ((image_width - 1) - (math_ops.cos(angles) *
                                     (image_width - 1) - math_ops.sin(angles) *
                                     (image_height - 1))) / 2.0
    y_offset = ((image_height - 1) - (math_ops.sin(angles) *
                                      (image_width - 1) + math_ops.cos(angles) *
                                      (image_height - 1))) / 2.0
    num_angles = array_ops.shape(angles)[0]
    return array_ops.concat(
        values=[
            math_ops.cos(angles)[:, None],
            -math_ops.sin(angles)[:, None],
            x_offset[:, None],
            math_ops.sin(angles)[:, None],
            math_ops.cos(angles)[:, None],
            y_offset[:, None],
            array_ops.zeros((num_angles, 2), dtypes.float32),
        ],
        axis=1)
开发者ID:Eagle732,项目名称:tensorflow,代码行数:44,代码来源:image_ops.py

示例5: Test

 def Test(self):
   np.random.seed(1)
   n = shape_[-1]
   batch_shape = shape_[:-2]
   np_dtype = dtype_.as_numpy_dtype
   a = np.random.uniform(
       low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
   if dtype_.is_complex:
     a += 1j * np.random.uniform(
         low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
   a += np.conj(a.T)
   a = np.tile(a, batch_shape + (1, 1))
   # Optimal stepsize for central difference is O(epsilon^{1/3}).
   epsilon = np.finfo(np_dtype).eps
   delta = 0.1 * epsilon**(1.0 / 3.0)
   # tolerance obtained by looking at actual differences using
   # np.linalg.norm(theoretical-numerical, np.inf) on -mavx build
   if dtype_ in (dtypes_lib.float32, dtypes_lib.complex64):
     tol = 1e-2
   else:
     tol = 1e-7
   with self.session(use_gpu=True):
     tf_a = constant_op.constant(a)
     if compute_v_:
       tf_e, tf_v = linalg_ops.self_adjoint_eig(tf_a)
       # (complex) Eigenvectors are only unique up to an arbitrary phase
       # We normalize the vectors such that the first component has phase 0.
       top_rows = tf_v[..., 0:1, :]
       if tf_a.dtype.is_complex:
         angle = -math_ops.angle(top_rows)
         phase = math_ops.complex(math_ops.cos(angle), math_ops.sin(angle))
       else:
         phase = math_ops.sign(top_rows)
       tf_v *= phase
       outputs = [tf_e, tf_v]
     else:
       tf_e = linalg_ops.self_adjoint_eigvals(tf_a)
       outputs = [tf_e]
     for b in outputs:
       x_init = np.random.uniform(
           low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
       if dtype_.is_complex:
         x_init += 1j * np.random.uniform(
             low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
       x_init += np.conj(x_init.T)
       x_init = np.tile(x_init, batch_shape + (1, 1))
       theoretical, numerical = gradient_checker.compute_gradient(
           tf_a,
           tf_a.get_shape().as_list(),
           b,
           b.get_shape().as_list(),
           x_init_value=x_init,
           delta=delta)
       self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol)
开发者ID:bunbutter,项目名称:tensorflow,代码行数:54,代码来源:self_adjoint_eig_op_test.py

示例6: Compute

 def Compute(x):
   e, v = linalg_ops.self_adjoint_eig(x)
   # (complex) Eigenvectors are only unique up to an arbitrary phase
   # We normalize the vectors such that the first component has phase 0.
   top_rows = v[..., 0:1, :]
   if dtype_.is_complex:
     angle = -math_ops.angle(top_rows)
     phase = math_ops.complex(math_ops.cos(angle), math_ops.sin(angle))
   else:
     phase = math_ops.sign(top_rows)
   v *= phase
   return e, v
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:12,代码来源:self_adjoint_eig_op_test.py

示例7: input_fn

 def input_fn():
   start = random_ops.random_uniform(
       (), minval=0, maxval=(np.pi * 2.0), dtype=dtypes.float32, seed=seed)
   sin_curves = math_ops.sin(
       math_ops.linspace(start, (sequence_length - 1) * increment,
                         sequence_length + 1))
   inputs = array_ops.slice(sin_curves, [0], [sequence_length])
   labels = array_ops.slice(sin_curves, [1], [sequence_length])
   input_key = string_ops.string_join([
       'key_',
       string_ops.as_string(math_ops.cast(10000 * start, dtypes.int32))
   ])
   return {'inputs': inputs, input_key_column_name: input_key}, labels
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:13,代码来源:state_saving_rnn_estimator_test.py

示例8: _add_sinusoids_signal

    def _add_sinusoids_signal(x, time, min_timescale=1.0, max_timescale=1.0e4):
        """Adds a bunch of sinusoids of different frequencies to a Tensor.

        Each channel of the input Tensor is incremented by a sinusoid of a different
        frequency and phase.

        This allows attention to learn to use absolute and relative positions.
        Timing signals should be added to some precursors of both the query and the
        memory inputs to attention.

        The use of relative position is possible because sin(x+y) and cos(x+y) can be
        experessed in terms of y, sin(x) and cos(x).

        In particular, we use a geometric sequence of timescales starting with
        min_timescale and ending with max_timescale.  The number of different
        timescales is equal to channels / 2. For each timescale, we
        generate the two sinusoidal signals sin(timestep/timescale) and
        cos(timestep/timescale).  All of these sinusoids are concatenated in
        the channels dimension.

        Args:
          x: a Tensor with shape [batch, length, channels]
          min_timescale: a float
          max_timescale: a float

        Returns:
          a Tensor the same shape as x.
        """
        channels = x.get_shape().as_list()[-1]
        if x.get_shape().ndims == 3:  # [batch_size, timesteps, dim]
            length = array_ops.shape(x)[1]
            position = math_ops.to_float(math_ops.range(length))
        elif x.get_shape().ndims == 2:  # [batch_size, dim]
            length = 1
            position = math_ops.to_float(math_ops.range(time, time + 1))
        else:
            raise ValueError("need a Tensor with rank 2 or 3")
        num_timescales = channels // 2
        log_timescale_increment = (
            math.log(float(max_timescale) / float(min_timescale)) /
            (math_ops.to_float(num_timescales) - 1))
        inv_timescales = min_timescale * math_ops.exp(
            math_ops.to_float(math_ops.range(num_timescales)) * -log_timescale_increment)
        scaled_time = array_ops.expand_dims(position, 1) * array_ops.expand_dims(inv_timescales, 0)
        signal = array_ops.concat([math_ops.sin(scaled_time), math_ops.cos(scaled_time)], axis=1)
        signal = array_ops.pad(signal, [[0, 0], [0, math_ops.mod(channels, 2)]])
        if x.get_shape().ndims == 3:
            signal = array_ops.reshape(signal, [1, length, channels])
        else:
            signal = array_ops.reshape(signal, [1, channels])
        return x + signal
开发者ID:KIngpon,项目名称:NJUNMT-tf,代码行数:51,代码来源:embedding.py

示例9: test_stft_round_trip

  def test_stft_round_trip(self):
    # Tuples of (signal_length, frame_length, frame_step, fft_length).
    test_configs = [
        # 87.5% overlap.
        (4096, 256, 32, 256),
        # 75% overlap.
        (4096, 256, 64, 256),
        # Odd frame hop.
        (4096, 128, 25, 128),
        # Odd frame length.
        (4096, 127, 32, 128),
    ]

    for signal_length, frame_length, frame_step, fft_length in test_configs:
      # Generate a 440Hz signal at 8kHz sample rate.
      signal = math_ops.sin(2 * np.pi * 440 / 8000 *
                            math_ops.to_float(math_ops.range(signal_length)))
      self._compare_round_trip(signal, frame_length, frame_step, fft_length)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:18,代码来源:spectral_ops_test.py

示例10: _NormalizingSvd

 def _NormalizingSvd(tf_a):
   tf_s, tf_u, tf_v = linalg_ops.svd(tf_a, compute_uv=True, full_matrices=True)
   # Singular vectors are only unique up to an arbitrary phase. We normalize
   # the vectors such that the first component of u (if m >=n) or v (if n > m)
   # have phase 0.
   m = tf_a.shape[-2]
   n = tf_a.shape[-1]
   if m >= n:
     top_rows = tf_u[..., 0:1, :]
   else:
     top_rows = tf_v[..., 0:1, :]
   if tf_u.dtype.is_complex:
     angle = -math_ops.angle(top_rows)
     phase = math_ops.complex(math_ops.cos(angle), math_ops.sin(angle))
   else:
     phase = math_ops.sign(top_rows)
   tf_u *= phase[..., :m]
   tf_v *= phase[..., :n]
   return tf_s, tf_u, tf_v
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:19,代码来源:svd_op_test.py

示例11: test_gradients

  def test_gradients(self):
    """Test that spectral_ops.stft has a working gradient."""
    with spectral_ops_test_util.fft_kernel_label_map(), (
        self.test_session(use_gpu=True)) as sess:
      signal_length = 512

      # An all-zero signal has all zero gradients with respect to the sum of the
      # magnitude STFT.
      empty_signal = array_ops.zeros([signal_length], dtype=dtypes.float32)
      empty_signal_gradient = sess.run(
          self._compute_stft_gradient(empty_signal))
      self.assertTrue((empty_signal_gradient == 0.0).all())

      # A sinusoid will have non-zero components of its gradient with respect to
      # the sum of the magnitude STFT.
      sinusoid = math_ops.sin(
          2 * np.pi * math_ops.linspace(0.0, 1.0, signal_length))
      sinusoid_gradient = sess.run(self._compute_stft_gradient(sinusoid))
      self.assertFalse((sinusoid_gradient == 0.0).all())
开发者ID:1000sprites,项目名称:tensorflow,代码行数:19,代码来源:spectral_ops_test.py

示例12: get_multi_engine_graph_def

def get_multi_engine_graph_def(mode="FP32"):
  """Create a simple graph and return its graph_def."""
  dtype = dtypes.float32
  if mode.upper() == "FP16":
    dtype = dtypes.float16
  else:
    pass

  g = ops.Graph()
  with g.as_default():
    x = aops.placeholder(shape=[None, 3, 7, 5], name="input", dtype=dtype)
    with g.name_scope("Global_scope"):
      with g.name_scope("first_scope"):
        e = cop.constant(
            np.random.randn(3, 2, 3, 4), name="weights", dtype=dtype)
        conv = nn.conv2d(
            input=x,
            filter=e,
            data_format="NCHW",
            strides=[1, 1, 1, 1],
            padding="VALID",
            name="conv")
        b = cop.constant(np.random.randn(1, 4, 1, 1), name="bias1", dtype=dtype)
        t = conv * b

        b = cop.constant(np.random.randn(1, 4, 1, 1), name="bias2", dtype=dtype)
        q = conv / b
      edge = mops.sin(q)
      edge1 = mops.cos(conv)
      with g.name_scope("test_scope"):
        de = edge + edge1
        t -= edge1
        q *= edge
        t += q
        t -= de
    k = aops.squeeze(t, name="output")
  print(k.dtype)
  return g.as_graph_def()
开发者ID:Eagle732,项目名称:tensorflow,代码行数:38,代码来源:test_tftrt.py

示例13: _sin_fn

 def _sin_fn(x):
   ranger = math_ops.linspace(
       array_ops.reshape(x[0], []), (sequence_length - 1) * increment,
       sequence_length + 1)
   return math_ops.sin(ranger)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:5,代码来源:dynamic_rnn_estimator_test.py

示例14: _CosGrad

def _CosGrad(op, grad):
  """Returns grad * -sin(x)."""
  x = op.inputs[0]
  return -grad * math_ops.sin(x)
开发者ID:ray2020,项目名称:tensorflow,代码行数:4,代码来源:math_grad.py

示例15: tf_function

 def tf_function(self, x):
   """Takes tf tensor, evaluates the test function,  and returns tf tensor."""
   return math_ops.reduce_sum(
       math_ops.square(x - 0.5) + 0.25 * x + 1 * math_ops.sin(x * 15),
       2,
       keepdims=True)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:6,代码来源:interpolate_spline_test.py


注:本文中的tensorflow.python.ops.math_ops.sin函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。