当前位置: 首页>>代码示例>>Python>>正文


Python math_ops.negative函数代码示例

本文整理汇总了Python中tensorflow.python.ops.math_ops.negative函数的典型用法代码示例。如果您正苦于以下问题:Python negative函数的具体用法?Python negative怎么用?Python negative使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了negative函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testSideEffect

  def testSideEffect(self):
    a = constant_op.constant(1)
    b = constant_op.constant(1)
    c = math_ops.add(a, b)
    with ops.control_dependencies([c]):
      d = constant_op.constant(42)
    n = math_ops.negative(c)

    shared = []

    def sub(t):
      shared.append(t)
      return t

    c = subscribe.subscribe(c,
                            lambda t: script_ops.py_func(sub, [t], [t.dtype]))

    with self.test_session() as sess:
      c_out = sess.run([c])
      n_out = sess.run([n])
      d_out = sess.run([d])

    self.assertEquals(n_out, [-2])
    self.assertEquals(c_out, [2])
    self.assertEquals(d_out, [42])
    self.assertEquals(shared, [2, 2, 2])
开发者ID:Immexxx,项目名称:tensorflow,代码行数:26,代码来源:subscribe_test.py

示例2: testSideEffect

  def testSideEffect(self):
    a = constant_op.constant(1)
    b = constant_op.constant(1)
    c = math_ops.add(a, b)
    with ops.control_dependencies([c]):
      d = constant_op.constant(42)
    n = math_ops.negative(c)

    shared = []

    def sub(t):
      shared.append(t)
      return t

    c0 = c
    self.assertTrue(c0.op in d.op.control_inputs)
    c = subscribe.subscribe(c,
                            lambda t: script_ops.py_func(sub, [t], [t.dtype]))
    # Verify that control dependencies are correctly moved to the subscription.
    self.assertFalse(c0.op in d.op.control_inputs)
    self.assertTrue(c.op in d.op.control_inputs)

    with self.cached_session() as sess:
      c_out = self.evaluate([c])
      n_out = self.evaluate([n])
      d_out = self.evaluate([d])

    self.assertEqual(n_out, [-2])
    self.assertEqual(c_out, [2])
    self.assertEqual(d_out, [42])
    self.assertEqual(shared, [2, 2, 2])
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:31,代码来源:subscribe_test.py

示例3: testInitializerFunction

  def testInitializerFunction(self):
    value = [[-42], [133.7]]
    shape = [2, 1]
    with self.test_session():
      initializer = lambda: constant_op.constant(value)

      v1 = variables.Variable(initializer, dtype=dtypes.float32)
      self.assertEqual(shape, v1.get_shape())
      self.assertEqual(shape, v1.shape)
      self.assertAllClose(value, v1.initial_value.eval())
      with self.assertRaises(errors_impl.FailedPreconditionError):
        v1.eval()

      v2 = variables.Variable(
          math_ops.negative(v1.initialized_value()), dtype=dtypes.float32)
      self.assertEqual(v1.get_shape(), v2.get_shape())
      self.assertEqual(v1.shape, v2.shape)
      self.assertAllClose(np.negative(value), v2.initial_value.eval())

      # Once v2.initial_value.eval() has been called, v1 has effectively been
      # initialized.
      self.assertAllClose(value, v1.eval())

      with self.assertRaises(errors_impl.FailedPreconditionError):
        v2.eval()
      variables.global_variables_initializer().run()
      self.assertAllClose(np.negative(value), v2.eval())
开发者ID:j-min,项目名称:tensorflow,代码行数:27,代码来源:variables_test.py

示例4: setUp

  def setUp(self):
    self.a = variables.VariableV1(2.0, name="a")
    self.b = variables.VariableV1(3.0, name="b")

    self.c = math_ops.multiply(self.a, self.b, name="c")  # Should be 6.0.
    self.d = math_ops.multiply(self.a, self.a, name="d")  # Should be 4.0.

    self.e = math_ops.multiply(self.d, self.c, name="e")  # Should be 24.0.

    self.f_y = constant_op.constant(0.30, name="f_y")
    self.f = math_ops.div(self.b, self.f_y, name="f")  # Should be 10.0.

    # The there nodes x, y and z form a graph with "cross-links" in. I.e., x
    # and y are both direct inputs to z, but x is also a direct input to y.
    self.x = variables.VariableV1(2.0, name="x")  # Should be 2.0
    self.y = math_ops.negative(self.x, name="y")  # Should be -2.0.

    self.z = math_ops.multiply(self.x, self.y, name="z")  # Should be -4.0.

    rewriter_config = rewriter_config_pb2.RewriterConfig(
        disable_model_pruning=True,
        arithmetic_optimization=rewriter_config_pb2.RewriterConfig.OFF,
        constant_folding=rewriter_config_pb2.RewriterConfig.OFF)
    graph_options = config_pb2.GraphOptions(rewrite_options=rewriter_config)
    config = config_pb2.ConfigProto(graph_options=graph_options)
    self.sess = session.Session(config=config)
    self.sess.run(variables.global_variables_initializer())
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:27,代码来源:stepper_test.py

示例5: decayed_lr

 def decayed_lr():
   """Helper to recompute learning rate; most helpful in eager-mode."""
   global_step_recomp = math_ops.cast(global_step, dtype)
   p = global_step_recomp / decay_steps
   if staircase:
     p = math_ops.floor(p)
   exponent = math_ops.exp(
       math_ops.multiply(math_ops.negative(decay_rate), p))
   return math_ops.multiply(learning_rate, exponent, name=name)
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:9,代码来源:learning_rate_decay.py

示例6: _FloorModGrad

def _FloorModGrad(op, grad):
  """Returns grad * (1, -floor(x/y))."""
  x = math_ops.conj(op.inputs[0])
  y = math_ops.conj(op.inputs[1])

  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy)
  floor_xy = math_ops.floor_div(x, y)
  gx = array_ops.reshape(math_ops.reduce_sum(grad, rx), sx)
  gy = array_ops.reshape(
      math_ops.reduce_sum(grad * math_ops.negative(floor_xy), ry), sy)
  return gx, gy
开发者ID:PuchatekwSzortach,项目名称:tensorflow,代码行数:13,代码来源:math_grad.py

示例7: _XDivyGrad

def _XDivyGrad(op, grad):
  """Returns gradient of xdivy(x, y) with respect to x and y."""
  x = op.inputs[0]
  y = op.inputs[1]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy)
  with ops.control_dependencies([grad]):
    not_zero_x = math_ops.cast(
        math_ops.not_equal(x, math_ops.cast(0., dtype=x.dtype)), dtype=x.dtype)
    partial_x = gen_math_ops.xdivy(not_zero_x, y)
    partial_y = gen_math_ops.xdivy(math_ops.negative(x), y**2)
    return (array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx),
            array_ops.reshape(math_ops.reduce_sum(partial_y * grad, ry), sy))
开发者ID:aeverall,项目名称:tensorflow,代码行数:14,代码来源:math_grad.py

示例8: _createGraph

  def _createGraph(self):
    """Create graph for testing.

    Returns:
      Python Graph object.
    """
    with ops.Graph().as_default() as graph:
      with ops.device("/job:worker/task:0/cpu:0"):
        self.a = variables.VariableV1(10.0, name="a")
        self.b = variables.VariableV1(100.0, name="b")
        self.inc_a = state_ops.assign_add(self.a, 2.0, name="inc_a")
        self.dec_b = state_ops.assign_add(self.b, -5.0, name="dec_b")
        self.p = math_ops.multiply(self.inc_a, self.dec_b, name="p")
        self.q = math_ops.negative(self.p, name="q")
    return graph
开发者ID:perfmjs,项目名称:tensorflow,代码行数:15,代码来源:dist_session_debug_grpc_test.py

示例9: decayed_lr

  def decayed_lr(learning_rate, global_step, decay_steps, decay_rate, staircase,
                 name):
    """Helper to recompute learning rate; most helpful in eager-mode."""
    with ops.name_scope(name, "NaturalExpDecay",
                        [learning_rate, global_step, decay_rate]) as name:
      learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate")
      dtype = learning_rate.dtype
      decay_steps = math_ops.cast(decay_steps, dtype)
      decay_rate = math_ops.cast(decay_rate, dtype)

      global_step_recomp = math_ops.cast(global_step, dtype)
      p = global_step_recomp / decay_steps
      if staircase:
        p = math_ops.floor(p)
      exponent = math_ops.exp(
          math_ops.multiply(math_ops.negative(decay_rate), p))
      return math_ops.multiply(learning_rate, exponent, name=name)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:17,代码来源:learning_rate_decay_v2.py

示例10: setUp

  def setUp(self):
    self.a = variables.Variable(2.0, name="a")
    self.b = variables.Variable(3.0, name="b")

    self.c = math_ops.multiply(self.a, self.b, name="c")  # Should be 6.0.
    self.d = math_ops.multiply(self.a, self.a, name="d")  # Should be 4.0.

    self.e = math_ops.multiply(self.d, self.c, name="e")  # Should be 24.0.

    self.f_y = constant_op.constant(0.30, name="f_y")
    self.f = math_ops.div(self.b, self.f_y, name="f")  # Should be 10.0.

    # The there nodes x, y and z form a graph with "cross-links" in. I.e., x
    # and y are both direct inputs to z, but x is also a direct input to y.
    self.x = variables.Variable(2.0, name="x")  # Should be 2.0
    self.y = math_ops.negative(self.x, name="y")  # Should be -2.0.

    self.z = math_ops.multiply(self.x, self.y, name="z")  # Should be -4.0.

    self.sess = session.Session()
    self.sess.run(variables.global_variables_initializer())
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:21,代码来源:stepper_test.py

示例11: testInitializerFunction

  def testInitializerFunction(self):
    value = [[-42], [133.7]]
    shape = [2, 1]
    with self.cached_session():
      initializer = lambda: constant_op.constant(value)

      v1 = variables.Variable(initializer, dtype=dtypes.float32)
      self.assertEqual(shape, v1.get_shape())
      self.assertEqual(shape, v1.shape)
      self.assertAllClose(value, self.evaluate(v1.initial_value))
      with self.assertRaises(errors_impl.FailedPreconditionError):
        self.evaluate(v1)

      v2 = variables.Variable(
          math_ops.negative(v1.initialized_value()), dtype=dtypes.float32)
      self.assertEqual(v1.get_shape(), v2.get_shape())
      self.assertEqual(v1.shape, v2.shape)
      self.assertAllClose(np.negative(value), self.evaluate(v2.initial_value))

      with self.assertRaises(errors_impl.FailedPreconditionError):
        self.evaluate(v2)
      self.evaluate(variables.global_variables_initializer())
      self.assertAllClose(np.negative(value), self.evaluate(v2))
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:23,代码来源:variables_test.py

示例12: GetParams

  def GetParams(self):
    """Test for unary operations in TF-TRT."""
    dtype = dtypes.float32
    input_name = "input"
    input_dims = [12, 5, 8, 1, 1, 12]
    input2_name = "input_2"
    input2_dims = [12, 5, 8, 1, 12, 1, 1]
    g = ops.Graph()
    with g.as_default():
      x = array_ops.placeholder(dtype=dtype, shape=input_dims, name=input_name)
      q = math_ops.abs(x)
      q = q + 1.0
      q = gen_math_ops.exp(q)
      q = gen_math_ops.log(q)
      q = array_ops.squeeze(q, axis=-2)
      q = math_ops.abs(q)
      q = q + 2.2
      q = gen_math_ops.sqrt(q)
      q = gen_math_ops.rsqrt(q)
      q = math_ops.negative(q)
      q = array_ops.squeeze(q, axis=3)
      q = math_ops.abs(q)
      q = q + 3.0
      a = gen_math_ops.reciprocal(q)

      x = constant_op.constant(np.random.randn(5, 8, 12), dtype=dtype)
      q = math_ops.abs(x)
      q = q + 2.0
      q = gen_math_ops.exp(q)
      q = gen_math_ops.log(q)
      q = math_ops.abs(q)
      q = q + 2.1
      q = gen_math_ops.sqrt(q)
      q = gen_math_ops.rsqrt(q)
      q = math_ops.negative(q)
      q = math_ops.abs(q)
      q = q + 4.0
      b = gen_math_ops.reciprocal(q)

      # TODO(jie): this one will break, broadcasting on batch.
      x = array_ops.placeholder(
          dtype=dtype, shape=input2_dims, name=input2_name)
      q = math_ops.abs(x)
      q = q + 5.0
      q = gen_math_ops.exp(q)
      q = array_ops.squeeze(q, axis=[-1, -2, 3])
      q = gen_math_ops.log(q)
      q = math_ops.abs(q)
      q = q + 5.1
      q = gen_array_ops.reshape(q, [12, 5, 1, 1, 8, 1, 12])
      q = array_ops.squeeze(q, axis=[5, 2, 3])
      q = gen_math_ops.sqrt(q)
      q = math_ops.abs(q)
      q = q + 5.2
      q = gen_math_ops.rsqrt(q)
      q = math_ops.negative(q)
      q = math_ops.abs(q)
      q = q + 5.3
      c = gen_math_ops.reciprocal(q)

      q = a * b
      q = q / c
      array_ops.squeeze(q, name=self.output_name)
    return trt_test.TfTrtIntegrationTestParams(
        gdef=g.as_graph_def(),
        input_names=[input_name, input2_name],
        input_dims=[input_dims, input2_dims],
        num_expected_engines=5,
        expected_output_dims=(12, 5, 8, 12),
        allclose_atol=1.e-03,
        allclose_rtol=1.e-03)
开发者ID:StephenOman,项目名称:tensorflow,代码行数:71,代码来源:unary_test.py

示例13: natural_exp_decay

def natural_exp_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False,
                      name=None):
  """Applies natural exponential decay to the initial learning rate.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies an exponential decay function
  to a provided initial learning rate.  It requires an `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  decayed_learning_rate = learning_rate * exp(-decay_rate * global_step /
  decay_step)
  ```

  or, if `staircase` is `True`, as:

  ```python
  decayed_learning_rate = learning_rate * exp(-decay_rate * floor(global_step /
  decay_step))
  ```

  Example: decay exponentially with a base of 0.96:

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  learning_rate = 0.1
  decay_steps = 5
  k = 0.5
  learning_rate = tf.compat.v1.train.natural_exp_decay(learning_rate,
  global_step,
                                             decay_steps, k)

  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.compat.v1.train.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
      The initial learning rate.
    global_step: A Python number. Global step to use for the decay computation.
      Must not be negative.
    decay_steps: How often to apply decay.
    decay_rate: A Python number.  The decay rate.
    staircase: Whether to apply decay in a discrete staircase, as opposed to
      continuous, fashion.
    name: String.  Optional name of the operation.  Defaults to
      'ExponentialTimeDecay'.

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.

  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
  natural_exp_rate = math_ops.exp(math_ops.negative(decay_rate))
  decayed_lr = learning_rate_schedule.ExponentialDecay(
      learning_rate,
      decay_steps,
      natural_exp_rate,
      staircase=staircase,
      name=name)

  if not context.executing_eagerly():
    decayed_lr = decayed_lr(global_step)
  else:
    decayed_lr = functools.partial(decayed_lr, global_step)
  return decayed_lr
开发者ID:aritratony,项目名称:tensorflow,代码行数:85,代码来源:learning_rate_decay.py

示例14: training_loss

 def training_loss(self, features, labels, name='training_loss'):
   return math_ops.negative(self.average_size(), name=name)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:2,代码来源:tensor_forest.py

示例15: validation_loss

 def validation_loss(self, features, labels):
   return math_ops.negative(self.average_size())
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:2,代码来源:tensor_forest.py


注:本文中的tensorflow.python.ops.math_ops.negative函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。