当前位置: 首页>>代码示例>>Python>>正文


Python math_ops.maximum函数代码示例

本文整理汇总了Python中tensorflow.python.ops.math_ops.maximum函数的典型用法代码示例。如果您正苦于以下问题:Python maximum函数的具体用法?Python maximum怎么用?Python maximum使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了maximum函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _phi

def _phi(r, order):
  """Coordinate-wise nonlinearity used to define the order of the interpolation.

  See https://en.wikipedia.org/wiki/Polyharmonic_spline for the definition.

  Args:
    r: input op
    order: interpolation order

  Returns:
    phi_k evaluated coordinate-wise on r, for k = r
  """

  # using EPSILON prevents log(0), sqrt0), etc.
  # sqrt(0) is well-defined, but its gradient is not
  with ops.name_scope('phi'):
    if order == 1:
      r = math_ops.maximum(r, EPSILON)
      r = math_ops.sqrt(r)
      return r
    elif order == 2:
      return 0.5 * r * math_ops.log(math_ops.maximum(r, EPSILON))
    elif order == 4:
      return 0.5 * math_ops.square(r) * math_ops.log(
          math_ops.maximum(r, EPSILON))
    elif order % 2 == 0:
      r = math_ops.maximum(r, EPSILON)
      return 0.5 * math_ops.pow(r, 0.5 * order) * math_ops.log(r)
    else:
      r = math_ops.maximum(r, EPSILON)
      return math_ops.pow(r, 0.5 * order)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:31,代码来源:interpolate_spline.py

示例2: _renorm_correction_and_moments

  def _renorm_correction_and_moments(self, mean, variance, training):
    """Returns the correction and update values for renorm."""
    stddev = math_ops.sqrt(variance + self.epsilon)
    # Compute the average mean and standard deviation, as if they were
    # initialized with this batch's moments.
    mixed_renorm_mean = (self.renorm_mean +
                         (1. - self.renorm_mean_weight) * mean)
    mixed_renorm_stddev = (self.renorm_stddev +
                           (1. - self.renorm_stddev_weight) * stddev)
    # Compute the corrections for batch renorm.
    r = stddev / mixed_renorm_stddev
    d = (mean - mixed_renorm_mean) / mixed_renorm_stddev
    # Ensure the corrections use pre-update moving averages.
    with ops.control_dependencies([r, d]):
      mean = array_ops.identity(mean)
      stddev = array_ops.identity(stddev)
    rmin, rmax, dmax = [self.renorm_clipping.get(key)
                        for key in ['rmin', 'rmax', 'dmax']]
    if rmin is not None:
      r = math_ops.maximum(r, rmin)
    if rmax is not None:
      r = math_ops.minimum(r, rmax)
    if dmax is not None:
      d = math_ops.maximum(d, -dmax)
      d = math_ops.minimum(d, dmax)
    # When not training, use r=1, d=0, and decay=1 meaning no updates.
    r = _smart_select(training, lambda: r, lambda: array_ops.ones_like(r))
    d = _smart_select(training, lambda: d, lambda: array_ops.zeros_like(d))
    decay = _smart_select(training, lambda: self.renorm_momentum, lambda: 1.)

    def _update_renorm_variable(var, weight, value):
      """Updates a moving average and weight, returns the unbiased value."""
      # Update the variables without zero debiasing. The debiasing will be
      # accomplished by dividing the exponential moving average by the weight.
      # For example, after a single update, the moving average would be
      # (1-decay) * value. and the weight will be 1-decay, with their ratio
      # giving value.
      # Make sure the weight is not updated until before r and d computation.
      value = array_ops.identity(value)
      with ops.control_dependencies([value]):
        weight_value = array_ops.constant(1., dtype=weight.dtype)
      new_var = moving_averages.assign_moving_average(
          var, value, decay, zero_debias=False)
      new_weight = moving_averages.assign_moving_average(
          weight, weight_value, decay, zero_debias=False)
      return new_var / new_weight

    with ops.colocate_with(self.moving_mean):
      new_mean = _update_renorm_variable(self.renorm_mean,
                                         self.renorm_mean_weight,
                                         mean)
    with ops.colocate_with(self.moving_variance):
      new_stddev = _update_renorm_variable(self.renorm_stddev,
                                           self.renorm_stddev_weight,
                                           stddev)
      # Make sqrt(moving_variance + epsilon) = new_stddev.
      new_variance = math_ops.square(new_stddev) - self.epsilon

    return (r, d, new_mean, new_variance)
开发者ID:ilya-edrenkin,项目名称:tensorflow,代码行数:59,代码来源:normalization.py

示例3: _tf_range

def _tf_range(start_or_stop, stop, step):
  # Note: for static inputs (e.g. constants), tf.range errors out at graph
  # construction time, instead of returning an empty tensor. Preventing the
  # graph construction error aligns the semantics with Python.

  # TODO(mdan): We should optimize this when a full tensor is not required.
  if step is not UNDEFINED:
    # TODO(mdan): Add argument coercion similar to other cases.
    return math_ops.range(start_or_stop, stop, step)
  if stop is not UNDEFINED:
    stop = math_ops.maximum(start_or_stop, stop)
    return math_ops.range(start_or_stop, stop)
  start_or_stop = math_ops.maximum(start_or_stop, 0)
  return math_ops.range(start_or_stop)
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:14,代码来源:py_builtins.py

示例4: _compute_power_svd

  def _compute_power_svd(self, var, mat_g, mat_g_size, alpha, mat_h_slot_name):
    """Computes mat_h = mat_g^alpha using svd. mat_g is a symmetric PSD matrix.

    Args:
      var: the variable we are updating.
      mat_g: the symmetric PSD matrix whose power it to be computed
      mat_g_size: size of mat_g
      alpha: a real number
      mat_h_slot_name: name of slot to store the power, if needed.

    Returns:
      mat_h = mat_g^alpha

    Stores mat_h in the appropriate slot, if it exists.
    Note that mat_g is PSD. So we could use linalg_ops.self_adjoint_eig.
    """
    if mat_g_size == 1:
      mat_h = math_ops.pow(mat_g + self._epsilon, alpha)
    else:
      damping = self._epsilon * linalg_ops.eye(math_ops.to_int32(mat_g_size))
      diag_d, mat_u, mat_v = linalg_ops.svd(mat_g + damping, full_matrices=True)
      mat_h = math_ops.matmul(
          mat_v * math_ops.pow(math_ops.maximum(diag_d, self._epsilon), alpha),
          array_ops.transpose(mat_u))
    if mat_h_slot_name is not None:
      return state_ops.assign(self.get_slot(var, mat_h_slot_name), mat_h)
    return mat_h
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:27,代码来源:shampoo.py

示例5: _compute_vmeasure_score

def _compute_vmeasure_score(labels, predictions):
  vmeasure_score = math_ops.cast(
      script_ops.py_func(
          metrics.v_measure_score, [labels, predictions], [dtypes.float64],
          name='vmeasure'),
      dtypes.float32)
  return math_ops.maximum(0.0, vmeasure_score)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:7,代码来源:metric_loss_ops.py

示例6: _apply_dense

    def _apply_dense(self, grad, var):
        beta1_power = math_ops.cast(self._beta1_power, var.dtype.base_dtype)
        beta2_power = math_ops.cast(self._beta2_power, var.dtype.base_dtype)
        lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
        beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
        beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
        epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype)

        lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power))

        # m_t = beta1 * m + (1 - beta1) * g_t
        m = self.get_slot(var, "m")
        m_scaled_g_values = grad * (1 - beta1_t)
        m_t = state_ops.assign(m, beta1_t * m + m_scaled_g_values, use_locking=self._use_locking)

        # v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
        v = self.get_slot(var, "v")
        v_scaled_g_values = (grad * grad) * (1 - beta2_t)
        v_t = state_ops.assign(v, beta2_t * v + v_scaled_g_values, use_locking=self._use_locking)

        # amsgrad
        vhat = self.get_slot(var, "vhat")
        vhat_t = state_ops.assign(vhat, math_ops.maximum(v_t, vhat))
        v_sqrt = math_ops.sqrt(vhat_t)

        var_update = state_ops.assign_sub(var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking)
        return control_flow_ops.group(*[var_update, m_t, v_t, vhat_t])
开发者ID:zsdonghao,项目名称:tensorlayer,代码行数:27,代码来源:amsgrad.py

示例7: BackwardLoopBody

    def BackwardLoopBody(*args):
      """Backward loop body function."""
      t, dev_t = args[0], args[1]
      (theta, orig_state0, inputs, acc_state, acc_extras, d_theta, d_state1,
       d_inputs, d_acc_state) = _Pack(args[2:], bakloop_sig)

      # The input recurrent state for time step t is previous time step's
      # output, or the original state0 when on time step 0.
      state_from_acc = _Index(acc_state, math_ops.maximum(0, t - 1))
      state0 = functional_ops.If(
          math_ops.equal(t, array_ops.constant(0, dtypes.int32)),
          _Flatten([state_from_acc, orig_state0]), ReturnOrigState0,
          ReturnAccState)
      state0 = nest.pack_sequence_as(orig_state0, state0)

      # The external inputs for time step t.
      inputs_t = _Index(inputs, t)
      # The extras for time step t.
      extras_t = _Index(acc_extras, t)

      d_state1 = _Add(_Index(d_acc_state, t), d_state1)
      (d_theta_t, d_state0, d_inputs_t) = _Pack(
          Bak(*_Flatten([theta, state0, inputs_t, extras_t, d_state1])),
          [self._theta, self._state, self._inputs])
      d_theta = _Add(d_theta, d_theta_t)
      d_inputs = _Update(d_inputs, d_inputs_t, dev_t)
      return [math_ops.subtract(dev_t, 1)] + _Flatten([
          theta, orig_state0, inputs, acc_state, acc_extras, d_theta, d_state0,
          d_inputs, d_acc_state
      ])
开发者ID:AnishShah,项目名称:tensorflow,代码行数:30,代码来源:recurrent.py

示例8: _setup_sparsity

  def _setup_sparsity(self):
    begin_step = self._spec.sparsity_function_begin_step
    end_step = self._spec.sparsity_function_end_step
    initial_sparsity = self._spec.initial_sparsity
    target_sparsity = self._spec.target_sparsity
    exponent = self._spec.sparsity_function_exponent

    if begin_step >= end_step:
      raise ValueError(
          'Pruning must begin before it can end. begin_step=%d, end_step=%d' %
          (begin_step, end_step))

    with ops.name_scope(self._spec.name):
      p = math_ops.minimum(1.0,
                           math_ops.maximum(
                               0.0,
                               math_ops.div(
                                   math_ops.cast(self._global_step - begin_step,
                                                 np.float32),
                                   end_step - begin_step)))
      sparsity = math_ops.add(
          math_ops.multiply(initial_sparsity - target_sparsity,
                            math_ops.pow(1 - p, exponent)),
          target_sparsity,
          name='sparsity')

    return sparsity
开发者ID:SylChan,项目名称:tensorflow,代码行数:27,代码来源:pruning.py

示例9: clip_by_value

def clip_by_value(t, clip_value_min, clip_value_max,
                  name=None):
  """Clips tensor values to a specified min and max.

  Given a tensor `t`, this operation returns a tensor of the same type and
  shape as `t` with its values clipped to `clip_value_min` and `clip_value_max`.
  Any values less than `clip_value_min` are set to `clip_value_min`. Any values
  greater than `clip_value_max` are set to `clip_value_max`.

  Args:
    t: A `Tensor`.
    clip_value_min: A 0-D (scalar) `Tensor`. The minimum value to clip by.
    clip_value_max: A 0-D (scalar) `Tensor`. The maximum value to clip by.
    name: A name for the operation (optional).

  Returns:
    A clipped `Tensor`.
  """
  with ops.name_scope(name, "clip_by_value",
                      [t, clip_value_min, clip_value_max]) as name:
    t = ops.convert_to_tensor(t, name="t")

    # Go through list of tensors, for each value in each tensor clip
    t_min = math_ops.minimum(t, clip_value_max)
    t_max = math_ops.maximum(t_min, clip_value_min, name=name)

  return t_max
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:27,代码来源:clip_ops.py

示例10: _adaptive_max_norm

def _adaptive_max_norm(norm, std_factor, decay, global_step, epsilon, name):
  """Find max_norm given norm and previous average."""
  with vs.variable_scope(name, "AdaptiveMaxNorm", [norm]):
    log_norm = math_ops.log(norm + epsilon)

    def moving_average(name, value, decay):
      moving_average_variable = vs.get_variable(
          name,
          shape=value.get_shape(),
          dtype=value.dtype,
          initializer=init_ops.zeros_initializer(),
          trainable=False)
      return moving_averages.assign_moving_average(
          moving_average_variable, value, decay, zero_debias=False)

    # quicker adaptation at the beginning
    if global_step is not None:
      n = math_ops.to_float(global_step)
      decay = math_ops.minimum(decay, n / (n + 1.))

    # update averages
    mean = moving_average("mean", log_norm, decay)
    sq_mean = moving_average("sq_mean", math_ops.square(log_norm), decay)

    variance = sq_mean - math_ops.square(mean)
    std = math_ops.sqrt(math_ops.maximum(epsilon, variance))
    max_norms = math_ops.exp(mean + std_factor * std)
    return max_norms, mean
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:28,代码来源:optimizers.py

示例11: _resource_apply_sparse

  def _resource_apply_sparse(self, grad, var, indices):
    var_dtype = var.dtype.base_dtype
    lr_t = self._decayed_lr(var_dtype)

    beta_1_t = self._get_hyper('beta_1', var_dtype)
    beta_2_t = self._get_hyper('beta_2', var_dtype)
    local_step = math_ops.cast(self.iterations + 1, var_dtype)
    beta_1_power = math_ops.pow(beta_1_t, local_step)
    epsilon_t = self._get_hyper('epsilon', var_dtype)

    # m_t = beta1 * m + (1 - beta1) * g_t
    m = self.get_slot(var, 'm')
    m_slice = array_ops.gather(m, indices)
    m_t_slice = m_slice * beta_1_t + grad * (1 - beta_1_t)
    with ops.control_dependencies([m_t_slice]):
      m_t = self._resource_scatter_update(m, indices, m_t_slice)

    # u_t = max(beta2 * u, abs(g_t))
    v = self.get_slot(var, 'v')
    v_slice = array_ops.gather(v, indices)
    v_t_slice = math_ops.maximum(v_slice * beta_2_t, math_ops.abs(grad))
    with ops.control_dependencies([v_t_slice]):
      v_t = self._resource_scatter_update(v, indices, v_t_slice)
    # theta_t = theta - lr / (1 - beta1^t) * m_t / u_t
    var_slice = -lr_t / (1 - beta_1_power) * (
        m_t_slice / (v_t_slice + epsilon_t))
    with ops.control_dependencies([var_slice]):
      var_update = self._resource_scatter_add(var, indices, var_slice)
    return control_flow_ops.group(*[var_update, m_t, v_t])
开发者ID:aeverall,项目名称:tensorflow,代码行数:29,代码来源:adamax.py

示例12: calculate_reshape

def calculate_reshape(original_shape, new_shape, validate=False, name=None):
  """Calculates the reshaped dimensions (replacing up to one -1 in reshape)."""
  batch_shape_static = tensor_util.constant_value_as_shape(new_shape)
  if batch_shape_static.is_fully_defined():
    return np.int32(batch_shape_static.as_list()), batch_shape_static, []
  with ops.name_scope(name, "calculate_reshape", [original_shape, new_shape]):
    original_size = math_ops.reduce_prod(original_shape)
    implicit_dim = math_ops.equal(new_shape, -1)
    size_implicit_dim = (
        original_size // math_ops.maximum(1, -math_ops.reduce_prod(new_shape)))
    new_ndims = array_ops.shape(new_shape)
    expanded_new_shape = array_ops.where(  # Assumes exactly one `-1`.
        implicit_dim, array_ops.fill(new_ndims, size_implicit_dim), new_shape)
    validations = [] if not validate else [
        check_ops.assert_rank(
            original_shape, 1, message="Original shape must be a vector."),
        check_ops.assert_rank(
            new_shape, 1, message="New shape must be a vector."),
        check_ops.assert_less_equal(
            math_ops.count_nonzero(implicit_dim, dtype=dtypes.int32),
            1,
            message="At most one dimension can be unknown."),
        check_ops.assert_positive(
            expanded_new_shape, message="Shape elements must be >=-1."),
        check_ops.assert_equal(
            math_ops.reduce_prod(expanded_new_shape),
            original_size,
            message="Shape sizes do not match."),
    ]
    return expanded_new_shape, batch_shape_static, validations
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:30,代码来源:batch_reshape.py

示例13: _accuracy_baseline

def _accuracy_baseline(labels_mean):
  """Return accuracy baseline based on labels mean.

  This is the best the model could do by always predicting one class.

  Args:
    labels_mean: Tuple of value and update op.

  Returns:
    Tuple of value and update op.
  """
  with ops.name_scope(None, 'accuracy_baseline', labels_mean):
    value, update_op = labels_mean
    return (
        math_ops.maximum(value, 1. - value, name='value'),
        math_ops.maximum(update_op, 1 - update_op, name='update_op'))
开发者ID:vaccine,项目名称:tensorflow,代码行数:16,代码来源:head.py

示例14: l2_normalize

def l2_normalize(x, dim, epsilon=1e-12, name=None):
  """Normalizes along dimension `dim` using an L2 norm.

  For a 1-D tensor with `dim = 0`, computes

      output = x / sqrt(max(sum(x**2), epsilon))

  For `x` with more dimensions, independently normalizes each 1-D slice along
  dimension `dim`.

  Args:
    x: A `Tensor`.
    dim: Dimension along which to normalize.
    epsilon: A lower bound value for the norm. Will use `sqrt(epsilon)` as the
      divisor if `norm < sqrt(epsilon)`.
    name: A name for this operation (optional).

  Returns:
    A `Tensor` with the same shape as `x`.
  """
  with ops.op_scope([x], name, "l2_normalize") as name:
    x = ops.convert_to_tensor(x, name="x")
    square_sum = math_ops.reduce_sum(math_ops.square(x), [dim], keep_dims=True)
    x_inv_norm = math_ops.rsqrt(math_ops.maximum(square_sum, epsilon))
    return math_ops.mul(x, x_inv_norm, name=name)
开发者ID:BersaKAIN,项目名称:tensorflow,代码行数:25,代码来源:nn.py

示例15: _apply_sparse_shared

 def _apply_sparse_shared(self, grad, var, indices,
                          scatter_add, scatter_update):
   beta1_power = self._get_beta_accumulators()
   beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype)
   lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
   beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
   beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
   epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype)
   # m_t = beta1 * m + (1 - beta1) * g_t
   m = self.get_slot(var, "m")
   m_slice = array_ops.gather(m, indices)
   m_t_slice = m_slice * beta1_t + grad * (1 - beta1_t)
   with ops.control_dependencies([m_t_slice]):
     m_t = scatter_update(m, indices, m_t_slice)
   # u_t = max(beta2 * u, abs(g_t))
   v = self.get_slot(var, "v")
   v_slice = array_ops.gather(v, indices)
   v_t_slice = math_ops.maximum(v_slice * beta2_t, math_ops.abs(grad))
   with ops.control_dependencies([v_t_slice]):
     v_t = scatter_update(v, indices, v_t_slice)
   # theta_t = theta - lr / (1 - beta1^t) * m_t / u_t
   var_slice = -lr_t / (1 - beta1_power) * (m_t_slice /
                                            (v_t_slice + epsilon_t))
   with ops.control_dependencies([var_slice]):
     var_update = scatter_add(var, indices, var_slice)
   return control_flow_ops.group(*[var_update, m_t, v_t])
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:26,代码来源:adamax.py


注:本文中的tensorflow.python.ops.math_ops.maximum函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。