当前位置: 首页>>代码示例>>Python>>正文


Python math_ops.linspace函数代码示例

本文整理汇总了Python中tensorflow.python.ops.math_ops.linspace函数的典型用法代码示例。如果您正苦于以下问题:Python linspace函数的具体用法?Python linspace怎么用?Python linspace使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了linspace函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testConditionalMaskUpdate

 def testConditionalMaskUpdate(self):
   param_list = [
       "pruning_frequency=2", "begin_pruning_step=1", "end_pruning_step=6"
   ]
   test_spec = ",".join(param_list)
   pruning_hparams = pruning.get_pruning_hparams().parse(test_spec)
   weights = variables.Variable(
       math_ops.linspace(1.0, 100.0, 100), name="weights")
   masked_weights = pruning.apply_mask(weights)
   sparsity = variables.Variable(0.00, name="sparsity")
   # Set up pruning
   p = pruning.Pruning(pruning_hparams, sparsity=sparsity)
   p._spec.threshold_decay = 0.0
   mask_update_op = p.conditional_mask_update_op()
   sparsity_val = math_ops.linspace(0.0, 0.9, 10)
   increment_global_step = state_ops.assign_add(self.global_step, 1)
   non_zero_count = []
   with self.test_session() as session:
     variables.global_variables_initializer().run()
     for i in range(10):
       session.run(state_ops.assign(sparsity, sparsity_val[i]))
       session.run(mask_update_op)
       session.run(increment_global_step)
       non_zero_count.append(np.count_nonzero(masked_weights.eval()))
   # Weights pruned at steps 0,2,4,and,6
   expected_non_zero_count = [100, 100, 80, 80, 60, 60, 40, 40, 40, 40]
   self.assertAllEqual(expected_non_zero_count, non_zero_count)
开发者ID:Kongsea,项目名称:tensorflow,代码行数:27,代码来源:pruning_test.py

示例2: testWeightSpecificSparsity

  def testWeightSpecificSparsity(self):
    param_list = [
        "begin_pruning_step=1", "pruning_frequency=1", "end_pruning_step=100",
        "target_sparsity=0.5", "weight_sparsity_map=[layer2/weights:0.75]",
        "threshold_decay=0.0"
    ]
    test_spec = ",".join(param_list)
    pruning_hparams = pruning.get_pruning_hparams().parse(test_spec)

    with variable_scope.variable_scope("layer1"):
      w1 = variables.Variable(
          math_ops.linspace(1.0, 100.0, 100), name="weights")
      _ = pruning.apply_mask(w1)
    with variable_scope.variable_scope("layer2"):
      w2 = variables.Variable(
          math_ops.linspace(1.0, 100.0, 100), name="weights")
      _ = pruning.apply_mask(w2)

    p = pruning.Pruning(pruning_hparams)
    mask_update_op = p.conditional_mask_update_op()
    increment_global_step = state_ops.assign_add(self.global_step, 1)

    with self.cached_session() as session:
      variables.global_variables_initializer().run()
      for _ in range(110):
        session.run(mask_update_op)
        session.run(increment_global_step)

      self.assertAllEqual(
          session.run(pruning.get_weight_sparsity()), [0.5, 0.75])
开发者ID:AnishShah,项目名称:tensorflow,代码行数:30,代码来源:pruning_test.py

示例3: testNanFromGradsDontPropagate

  def testNanFromGradsDontPropagate(self):
    """Test that update with NaN gradients does not cause NaN in results."""
    def _nan_log_prob_with_nan_gradient(x):
      return np.nan * math_ops.reduce_sum(x)

    with self.test_session() as sess:
      initial_x = math_ops.linspace(0.01, 5, 10)
      updated_x, kernel_results = hmc.kernel(
          target_log_prob_fn=_nan_log_prob_with_nan_gradient,
          current_state=initial_x,
          step_size=2.,
          num_leapfrog_steps=5,
          seed=47)
      initial_x_, updated_x_, acceptance_probs_ = sess.run(
          [initial_x, updated_x, kernel_results.acceptance_probs])

      logging_ops.vlog(1, "initial_x = {}".format(initial_x_))
      logging_ops.vlog(1, "updated_x = {}".format(updated_x_))
      logging_ops.vlog(1, "acceptance_probs = {}".format(acceptance_probs_))

      self.assertAllEqual(initial_x_, updated_x_)
      self.assertEqual(acceptance_probs_, 0.)

      self.assertAllFinite(
          gradients_ops.gradients(updated_x, initial_x)[0].eval())
      self.assertAllEqual([True], [g is None for g in gradients_ops.gradients(
          kernel_results.proposed_grads_target_log_prob, initial_x)])
      self.assertAllEqual([False], [g is None for g in gradients_ops.gradients(
          kernel_results.proposed_grads_target_log_prob,
          kernel_results.proposed_state)])
开发者ID:ClowJ,项目名称:tensorflow,代码行数:30,代码来源:hmc_test.py

示例4: testNanRejection

  def testNanRejection(self):
    """Tests that an update that yields NaN potentials gets rejected.

    We run HMC with a target distribution that returns NaN
    log-likelihoods if any element of x < 0, and unit-scale
    exponential log-likelihoods otherwise. The exponential potential
    pushes x towards 0, ensuring that any reasonably large update will
    push us over the edge into NaN territory.
    """
    def _unbounded_exponential_log_prob(x):
      """An exponential distribution with log-likelihood NaN for x < 0."""
      per_element_potentials = array_ops.where(
          x < 0.,
          array_ops.fill(array_ops.shape(x), x.dtype.as_numpy_dtype(np.nan)),
          -x)
      return math_ops.reduce_sum(per_element_potentials)

    with self.test_session() as sess:
      initial_x = math_ops.linspace(0.01, 5, 10)
      updated_x, kernel_results = hmc.kernel(
          target_log_prob_fn=_unbounded_exponential_log_prob,
          current_state=initial_x,
          step_size=2.,
          num_leapfrog_steps=5,
          seed=46)
      initial_x_, updated_x_, acceptance_probs_ = sess.run(
          [initial_x, updated_x, kernel_results.acceptance_probs])

      logging_ops.vlog(1, "initial_x = {}".format(initial_x_))
      logging_ops.vlog(1, "updated_x = {}".format(updated_x_))
      logging_ops.vlog(1, "acceptance_probs = {}".format(acceptance_probs_))

      self.assertAllEqual(initial_x_, updated_x_)
      self.assertEqual(acceptance_probs_, 0.)
开发者ID:ClowJ,项目名称:tensorflow,代码行数:34,代码来源:hmc_test.py

示例5: _LinSpace

 def _LinSpace(self, start, stop, num):
   # NOTE(touts): Needs to pass a graph to get a new session each time.
   with ops.Graph().as_default() as graph:
     with self.test_session(graph=graph, force_gpu=self.force_gpu):
       tf_ans = math_ops.linspace(start, stop, num, name="linspace")
       self.assertEqual([num], tf_ans.get_shape())
       return tf_ans.eval()
开发者ID:HughKu,项目名称:tensorflow,代码行数:7,代码来源:init_ops_test.py

示例6: testNanFromGradsDontPropagate

  def testNanFromGradsDontPropagate(self):
    """Test that update with NaN gradients does not cause NaN in results."""
    def _nan_log_prob_with_nan_gradient(x):
      return np.nan * math_ops.reduce_sum(x)

    with self.test_session() as sess:
      initial_x = math_ops.linspace(0.01, 5, 10)
      updated_x, acceptance_probs, new_log_prob, new_grad = hmc.kernel(
          2., 5, initial_x, _nan_log_prob_with_nan_gradient, [0])
      initial_x_val, updated_x_val, acceptance_probs_val = sess.run(
          [initial_x, updated_x, acceptance_probs])

      logging.vlog(1, 'initial_x = {}'.format(initial_x_val))
      logging.vlog(1, 'updated_x = {}'.format(updated_x_val))
      logging.vlog(1, 'acceptance_probs = {}'.format(acceptance_probs_val))

      self.assertAllEqual(initial_x_val, updated_x_val)
      self.assertEqual(acceptance_probs_val, 0.)

      self.assertAllFinite(
          gradients_impl.gradients(updated_x, initial_x)[0].eval())
      self.assertTrue(
          gradients_impl.gradients(new_grad, initial_x)[0] is None)

      # Gradients of the acceptance probs and new log prob are not finite.
      _ = new_log_prob  # Prevent unused arg error.
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:26,代码来源:hmc_test.py

示例7: testNanRejection

  def testNanRejection(self):
    """Tests that an update that yields NaN potentials gets rejected.

    We run HMC with a target distribution that returns NaN
    log-likelihoods if any element of x < 0, and unit-scale
    exponential log-likelihoods otherwise. The exponential potential
    pushes x towards 0, ensuring that any reasonably large update will
    push us over the edge into NaN territory.
    """
    def _unbounded_exponential_log_prob(x):
      """An exponential distribution with log-likelihood NaN for x < 0."""
      per_element_potentials = array_ops.where(x < 0,
                                               np.nan * array_ops.ones_like(x),
                                               -x)
      return math_ops.reduce_sum(per_element_potentials)

    with self.test_session() as sess:
      initial_x = math_ops.linspace(0.01, 5, 10)
      updated_x, acceptance_probs, _, _ = hmc.kernel(
          2., 5, initial_x, _unbounded_exponential_log_prob, [0])
      initial_x_val, updated_x_val, acceptance_probs_val = sess.run(
          [initial_x, updated_x, acceptance_probs])

      logging.vlog(1, 'initial_x = {}'.format(initial_x_val))
      logging.vlog(1, 'updated_x = {}'.format(updated_x_val))
      logging.vlog(1, 'acceptance_probs = {}'.format(acceptance_probs_val))

      self.assertAllEqual(initial_x_val, updated_x_val)
      self.assertEqual(acceptance_probs_val, 0.)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:29,代码来源:hmc_test.py

示例8: setUp

  def setUp(self):
    ops.reset_default_graph()
    dim = 1
    num = 3
    with ops.name_scope('some_scope'):
      # Basically from 0 to dim*num-1.
      flat_data = math_ops.linspace(0.0, dim * num - 1, dim * num)
      bias = variables.Variable(
          array_ops.reshape(flat_data, (num, dim)), name='bias')
    save = saver.Saver([bias])
    with self.test_session() as sess:
      variables.global_variables_initializer().run()
      self.bundle_file = os.path.join(test.get_temp_dir(), 'bias_checkpoint')
      save.save(sess, self.bundle_file)

    self.new_class_vocab_file = os.path.join(
        test.test_src_dir_path(_TESTDATA_PATH), 'keyword_new.txt')
    self.old_class_vocab_file = os.path.join(
        test.test_src_dir_path(_TESTDATA_PATH), 'keyword.txt')
    self.init_val = 42

    def _init_val_initializer(shape, dtype=None, partition_info=None):
      del dtype, partition_info  # Unused by this unit-testing initializer.
      return array_ops.tile(
          constant_op.constant([[self.init_val]], dtype=dtypes.float32), shape)

    self.initializer = _init_val_initializer
开发者ID:1000sprites,项目名称:tensorflow,代码行数:27,代码来源:checkpoint_ops_test.py

示例9: make_variable

 def make_variable(self):
   n = 256
   shape = (n, n, n)
   items = n**3
   var = variables.Variable(
       array_ops.reshape(math_ops.linspace(1., float(items), items), shape),
       dtype=dtypes.float32)
   return var
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:8,代码来源:array_ops_test.py

示例10: _multi_gamma_sequence

 def _multi_gamma_sequence(self, a, p, name="multi_gamma_sequence"):
     """Creates sequence used in multivariate (di)gamma; shape = shape(a)+[p]."""
     with self._name_scope(name, values=[a, p]):
         # Linspace only takes scalars, so we'll add in the offset afterwards.
         seq = math_ops.linspace(
             constant_op.constant(0.0, dtype=self.dtype), 0.5 - 0.5 * p, math_ops.cast(p, dtypes.int32)
         )
         return seq + array_ops.expand_dims(a, [-1])
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:8,代码来源:wishart.py

示例11: test_finds_max_of_long_array

 def test_finds_max_of_long_array(self):
   # d - 1 == d in float32 and d = 3e7.
   # So this test only passes if we use double for the percentile indices.
   # If float is used, it fails with InvalidArgumentError about an index out of
   # bounds.
   x = math_ops.linspace(0., 3e7, num=int(3e7))
   with self.cached_session():
     minval = sample_stats.percentile(x, q=0, validate_args=True)
     self.assertAllEqual(0, minval.eval())
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:9,代码来源:sample_stats_test.py

示例12: input_fn

 def input_fn():
   start = random_ops.random_uniform(
       (), minval=0, maxval=(np.pi * 2.0), dtype=dtypes.float32, seed=seed)
   sin_curves = math_ops.sin(
       math_ops.linspace(start, (sequence_length - 1) * increment,
                         sequence_length + 1))
   inputs = array_ops.slice(sin_curves, [0], [sequence_length])
   labels = array_ops.slice(sin_curves, [1], [sequence_length])
   return {'inputs': inputs}, labels
开发者ID:finardi,项目名称:tensorflow,代码行数:9,代码来源:state_saving_rnn_estimator_test.py

示例13: input_fn

 def input_fn():
   start = random_ops.random_uniform(
       (), minval=0, maxval=(np.pi * 2.0), dtype=dtypes.float32, seed=seed)
   sin_curves = math_ops.sin(
       math_ops.linspace(start, (sequence_length - 1) * increment,
                         sequence_length + 1))
   inputs = array_ops.slice(sin_curves, [0], [sequence_length])
   labels = array_ops.slice(sin_curves, [1], [sequence_length])
   input_key = string_ops.string_join([
       'key_',
       string_ops.as_string(math_ops.cast(10000 * start, dtypes.int32))
   ])
   return {'inputs': inputs, input_key_column_name: input_key}, labels
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:13,代码来源:state_saving_rnn_estimator_test.py

示例14: _compute_quantiles

 def _compute_quantiles():
   """Helper to build quantiles."""
   # Omit {0, 1} since they might lead to Inf/NaN.
   zero = array_ops.zeros([], dtype=dist.dtype)
   edges = math_ops.linspace(zero, 1., quadrature_size + 3)[1:-1]
   # Expand edges so its broadcast across batch dims.
   edges = array_ops.reshape(edges, shape=array_ops.concat([
       [-1], array_ops.ones([batch_ndims], dtype=dtypes.int32)], axis=0))
   quantiles = dist.quantile(edges)
   # Cyclically permute left by one.
   perm = array_ops.concat([
       math_ops.range(1, 1 + batch_ndims), [0]], axis=0)
   quantiles = array_ops.transpose(quantiles, perm)
   return quantiles
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:14,代码来源:poisson_lognormal.py

示例15: testUpdateSingleMask

 def testUpdateSingleMask(self):
   with self.test_session() as session:
     weights = variables.Variable(
         math_ops.linspace(1.0, 100.0, 100), name="weights")
     masked_weights = pruning.apply_mask(weights)
     sparsity = variables.Variable(0.5, name="sparsity")
     p = pruning.Pruning(sparsity=sparsity)
     p._spec.threshold_decay = 0.0
     mask_update_op = p.mask_update_op()
     variables.global_variables_initializer().run()
     masked_weights_val = masked_weights.eval()
     self.assertAllEqual(np.count_nonzero(masked_weights_val), 100)
     session.run(mask_update_op)
     masked_weights_val = masked_weights.eval()
     self.assertAllEqual(np.count_nonzero(masked_weights_val), 51)
开发者ID:Kongsea,项目名称:tensorflow,代码行数:15,代码来源:pruning_test.py


注:本文中的tensorflow.python.ops.math_ops.linspace函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。