本文整理汇总了Python中tensorflow.python.ops.math_ops.less_equal函数的典型用法代码示例。如果您正苦于以下问题:Python less_equal函数的具体用法?Python less_equal怎么用?Python less_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了less_equal函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: maybe_update_masks
def maybe_update_masks():
with ops.name_scope(self._spec.name):
is_step_within_pruning_range = math_ops.logical_and(
math_ops.greater_equal(self._global_step,
self._spec.begin_pruning_step),
# If end_pruning_step is negative, keep pruning forever!
math_ops.logical_or(
math_ops.less_equal(self._global_step,
self._spec.end_pruning_step),
math_ops.less(self._spec.end_pruning_step, 0)))
is_pruning_step = math_ops.less_equal(
math_ops.add(self._last_update_step, self._spec.pruning_frequency),
self._global_step)
return math_ops.logical_and(is_step_within_pruning_range,
is_pruning_step)
示例2: _filter_input
def _filter_input(input_tensor, vocab_freq_table, vocab_min_count,
vocab_subsampling, corpus_size, seed):
"""Filters input tensor based on vocab freq, threshold, and subsampling."""
if vocab_freq_table is None:
return input_tensor
if not isinstance(vocab_freq_table, lookup.InitializableLookupTableBase):
raise ValueError(
"vocab_freq_table must be a subclass of "
"InitializableLookupTableBase (such as HashTable) instead of type "
"{}.".format(type(vocab_freq_table)))
with ops.name_scope(
"filter_vocab", values=[vocab_freq_table, input_tensor, vocab_min_count]):
freq = vocab_freq_table.lookup(input_tensor)
# Filters out elements in input_tensor that are not found in
# vocab_freq_table (table returns a default value of -1 specified above when
# an element is not found).
mask = math_ops.not_equal(freq, vocab_freq_table.default_value)
# Filters out elements whose vocab frequencies are less than the threshold.
if vocab_min_count is not None:
cast_threshold = math_ops.cast(vocab_min_count, freq.dtype)
mask = math_ops.logical_and(mask,
math_ops.greater_equal(freq, cast_threshold))
input_tensor = array_ops.boolean_mask(input_tensor, mask)
freq = array_ops.boolean_mask(freq, mask)
if not vocab_subsampling:
return input_tensor
if vocab_subsampling < 0 or vocab_subsampling > 1:
raise ValueError(
"Invalid vocab_subsampling={} - it should be within range [0, 1].".
format(vocab_subsampling))
# Subsamples the input tokens based on vocabulary frequency and
# vocab_subsampling threshold (ie randomly discard commonly appearing
# tokens).
with ops.name_scope(
"subsample_vocab", values=[input_tensor, freq, vocab_subsampling]):
corpus_size = math_ops.cast(corpus_size, dtypes.float64)
freq = math_ops.cast(freq, dtypes.float64)
vocab_subsampling = math_ops.cast(vocab_subsampling, dtypes.float64)
# From tensorflow_models/tutorials/embedding/word2vec_kernels.cc, which is
# suppose to correlate with Eq. 5 in http://arxiv.org/abs/1310.4546.
keep_prob = ((math_ops.sqrt(freq /
(vocab_subsampling * corpus_size)) + 1.0) *
(vocab_subsampling * corpus_size / freq))
random_prob = random_ops.random_uniform(
array_ops.shape(freq),
minval=0,
maxval=1,
dtype=dtypes.float64,
seed=seed)
mask = math_ops.less_equal(random_prob, keep_prob)
return array_ops.boolean_mask(input_tensor, mask)
示例3: _single_seq_fn
def _single_seq_fn():
log_norm = math_ops.reduce_logsumexp(first_input, [1])
# Mask `log_norm` of the sequences with length <= zero.
log_norm = array_ops.where(math_ops.less_equal(sequence_lengths, 0),
array_ops.zeros_like(log_norm),
log_norm)
return log_norm
示例4: assert_less_equal
def assert_less_equal(x, y, data=None, summarize=None, name=None):
"""Assert the condition `x <= y` holds element-wise.
This condition holds if for every pair of (possibly broadcast) elements
`x[i]`, `y[i]`, we have `x[i] <= y[i]`.
If both `x` and `y` are empty, this is trivially satisfied.
Args:
x: Numeric `Tensor`.
y: Numeric `Tensor`, same dtype as and broadcastable to `x`.
data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of `x`, `y`.
summarize: Print this many entries of each tensor.
name: A name for this operation (optional). Defaults to "assert_less_equal"
Returns:
Op that raises `InvalidArgumentError` if `x <= y` is False.
"""
with ops.op_scope([x, y, data], name, 'assert_less_equal'):
x = ops.convert_to_tensor(x, name='x')
y = ops.convert_to_tensor(y, name='y')
if data is None:
data = [
'Condition x <= y did not hold element-wise: x = ', x.name, x, 'y = ',
y.name, y
]
condition = math_ops.reduce_all(math_ops.less_equal(x, y))
return logging_ops.Assert(condition, data, summarize=summarize)
示例5: _hinge_loss
def _hinge_loss(logits, target):
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(target), 2),
["target's shape should be either [batch_size, 1] or [batch_size]"])
with ops.control_dependencies([check_shape_op]):
target = array_ops.reshape(target, shape=[array_ops.shape(target)[0], 1])
return losses.hinge_loss(logits, target)
示例6: _softmax_cross_entropy_loss
def _softmax_cross_entropy_loss(logits, target):
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(target), 2),
["target's shape should be either [batch_size, 1] or [batch_size]"])
with ops.control_dependencies([check_shape_op]):
target = array_ops.reshape(target, shape=[array_ops.shape(target)[0]])
return nn.sparse_softmax_cross_entropy_with_logits(logits, target)
示例7: testPositive
def testPositive(self):
n = int(10e3)
for dt in [dtypes.float16, dtypes.float32, dtypes.float64]:
with self.cached_session():
x = random_ops.random_gamma(shape=[n], alpha=0.001, dtype=dt, seed=0)
self.assertEqual(0, math_ops.reduce_sum(math_ops.cast(
math_ops.less_equal(x, 0.), dtype=dtypes.int64)).eval())
示例8: assert_close
def assert_close(
x, y, data=None, summarize=None, message=None, name="assert_close"):
"""Assert that that x and y are within machine epsilon of each other.
Args:
x: Numeric `Tensor`
y: Numeric `Tensor`
data: The tensors to print out if the condition is `False`. Defaults to
error message and first few entries of `x` and `y`.
summarize: Print this many entries of each tensor.
message: A string to prefix to the default message.
name: A name for this operation (optional).
Returns:
Op raising `InvalidArgumentError` if |x - y| > machine epsilon.
"""
message = message or ""
x = ops.convert_to_tensor(x, name="x")
y = ops.convert_to_tensor(y, name="y")
if x.dtype.is_integer:
return check_ops.assert_equal(
x, y, data=data, summarize=summarize, message=message, name=name)
with ops.name_scope(name, "assert_close", [x, y, data]):
tol = np.finfo(x.dtype.as_numpy_dtype).resolution
if data is None:
data = [
message,
"Condition x ~= y did not hold element-wise: x = ", x.name, x, "y = ",
y.name, y
]
condition = math_ops.reduce_all(math_ops.less_equal(math_ops.abs(x-y), tol))
return control_flow_ops.Assert(
condition, data, summarize=summarize)
示例9: loss_fn
def loss_fn(logits, labels):
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(labels), 2),
["labels shape should be either [batch_size, 1] or [batch_size]"])
with ops.control_dependencies([check_shape_op]):
labels = array_ops.reshape(
labels, shape=[array_ops.shape(labels)[0], 1])
return losses.hinge_loss(logits, labels)
示例10: _log_loss_with_two_classes
def _log_loss_with_two_classes(logits, target):
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(target), 2),
["target's shape should be either [batch_size, 1] or [batch_size]"])
with ops.control_dependencies([check_shape_op]):
target = array_ops.reshape(target, shape=[array_ops.shape(target)[0], 1])
return nn.sigmoid_cross_entropy_with_logits(
logits, math_ops.to_float(target))
示例11: _loss_fn
def _loss_fn(logits, labels):
with ops.name_scope(None, "hinge_loss", (logits, labels)) as name:
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(labels), 2),
("labels shape should be either [batch_size, 1] or [batch_size]",))
with ops.control_dependencies((check_shape_op,)):
labels = array_ops.reshape(
labels, shape=(array_ops.shape(labels)[0], 1))
return losses.hinge_loss(logits, labels, scope=name)
示例12: loop_body
def loop_body(loop_count, cdf):
temp = math_ops.reduce_sum(
math_ops.cast(
math_ops.less_equal(indices, loop_count), dtypes.float32))
cdf = math_ops.add(
cdf,
array_ops.one_hot(
loop_count, depth=nbins, on_value=temp, off_value=0.0))
return [loop_count + 1, cdf]
示例13: _reshape_targets
def _reshape_targets(targets):
if targets is None:
return None
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(targets), 2),
["target's should be either [batch_size, n_labels] or [batch_size]"])
with ops.control_dependencies([check_shape_op]):
targets = array_ops.reshape(
targets, shape=[array_ops.shape(targets)[0], -1])
return targets
示例14: _reshape_targets
def _reshape_targets(targets):
""""Reshapes targets into [batch_size, 1] to be compatible with logits."""
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(targets), 2),
["targets shape should be either [batch_size, 1] or [batch_size]"])
with ops.control_dependencies([check_shape_op]):
targets = array_ops.reshape(targets,
shape=[array_ops.shape(targets)[0], 1])
return targets
示例15: _assert_close
def _assert_close(x, y, data=None, summarize=None, name=None):
if x.dtype.is_integer:
return check_ops.assert_equal(x, y, data=data, summarize=summarize, name=name)
with ops.op_scope([x, y, data], name, "assert_close"):
x = ops.convert_to_tensor(x, name="x")
y = ops.convert_to_tensor(y, name="y")
tol = np.finfo(x.dtype.as_numpy_dtype).resolution
if data is None:
data = ["Condition x ~= y did not hold element-wise: x = ", x.name, x, "y = ", y.name, y]
condition = math_ops.reduce_all(math_ops.less_equal(math_ops.abs(x - y), tol))
return logging_ops.Assert(condition, data, summarize=summarize)