当前位置: 首页>>代码示例>>Python>>正文


Python linalg_ops.norm函数代码示例

本文整理汇总了Python中tensorflow.python.ops.linalg_ops.norm函数的典型用法代码示例。如果您正苦于以下问题:Python norm函数的具体用法?Python norm怎么用?Python norm使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了norm函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testShapesValues

 def testShapesValues(self):
   gain = 3.14
   for dtype in [dtypes.float32]:
     for kernel_size in [[3], [8], [3, 5], [2, 4], [3, 3, 3], [2, 2, 2]]:
       tol = 1e-2
       # Check orthogonality by computing ratio between
       # the 2-norms of the inputs and outputs.
       if len(kernel_size) == 1:
         shape = [4, 32, 64]
         convolution = convolutional.conv1d
       elif len(kernel_size) == 2:
         convolution = convolutional.conv2d
         shape = [4, 32, 32, 64]
       else:
         shape = [4, 16, 16, 16, 64]
         convolution = convolutional.conv3d
       inputs = random_ops.random_normal(shape, dtype=dtype)
       inputs_2norm = linalg_ops.norm(inputs)
       outputs = convolution(
           inputs, padding="same", filters=128,
           kernel_size=kernel_size, use_bias=False,
           kernel_initializer=init_ops.convolutional_delta_orthogonal(
               gain=gain))
       outputs_shape = shape[0:-1] + [128]
       outputs_2norm = linalg_ops.norm(outputs)
       ratio = outputs_2norm / inputs_2norm
       my_ops = variables.global_variables_initializer()
       with self.test_session(use_gpu=True) as sess:
         sess.run(my_ops)
         # Check the shape of the outputs
         t = outputs.eval()
         self.assertAllEqual(t.shape, outputs_shape)
         # Check isometry of the delta-orthogonal kernel.
         self.assertAllClose(sess.run(ratio), np.sqrt(gain),
                             rtol=tol, atol=tol)
开发者ID:HughKu,项目名称:tensorflow,代码行数:35,代码来源:init_ops_test.py

示例2: testInvalidAxis

 def testInvalidAxis(self):
   matrix = [[0., 1.], [2., 3.]]
   for axis_ in [], [1, 2, 3], [[1]], [[1], [2]], [3.1415], [1, 1]:
     error_prefix = ("'axis' must be None, an integer, or a tuple of 2 unique "
                     "integers")
     with self.assertRaisesRegexp(ValueError, error_prefix):
       linalg_ops.norm(matrix, axis=axis_)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:7,代码来源:norm_op_test.py

示例3: _CompareNorm

 def _CompareNorm(self, matrix):
   np_norm = np.linalg.norm(matrix, ord=ord_, axis=axis_, keepdims=keep_dims_)
   with self.cached_session(use_gpu=True) as sess:
     if use_static_shape_:
       tf_matrix = constant_op.constant(matrix)
       tf_norm = linalg_ops.norm(
           tf_matrix, ord=ord_, axis=axis_, keepdims=keep_dims_)
       tf_norm_val = self.evaluate(tf_norm)
     else:
       tf_matrix = array_ops.placeholder(dtype_)
       tf_norm = linalg_ops.norm(
           tf_matrix, ord=ord_, axis=axis_, keepdims=keep_dims_)
       tf_norm_val = sess.run(tf_norm, feed_dict={tf_matrix: matrix})
   self.assertAllClose(np_norm, tf_norm_val, rtol=1e-5, atol=1e-5)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:14,代码来源:norm_op_test.py

示例4: compute_lr

 def compute_lr(self, grad, var):
   scaled_lr = self._learning_rate
   if self._skip_list is None or not any(v in var.name
                                         for v in self._skip_list):
     w_norm = linalg_ops.norm(var, ord=2)
     g_norm = linalg_ops.norm(grad, ord=2)
     trust_ratio = array_ops.where(
         math_ops.greater(w_norm, 0),
         array_ops.where(
             math_ops.greater(g_norm, 0),
             (self._eeta * w_norm /
              (g_norm + self._weight_decay * w_norm + self._epsilon)), 1.0),
         1.0)
     scaled_lr = self._learning_rate * trust_ratio
   return scaled_lr
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:15,代码来源:lars_optimizer.py

示例5: testTransform

 def testTransform(self):
   # This tests all combinations of:
   #   - ids rank 0, 1, >1
   #   - params sharded/unsharded
   # It always applies max_norm.
   np.random.seed(8)
   l2_norm = 2.
   with self.test_session():
     # Param values are in [l2_norm, l2_norm+1) so it will always clip.
     params = np.random.rand(6, 3) + l2_norm
     params_norm = l2_norm * params / np.sqrt(
         np.sum(params * params, axis=1, keepdims=True))
     # Compute the norm of each embedding. This will change the embedding
     # rank to 0.
     params_norm = np.linalg.norm(params_norm, axis=1)
     transform = lambda x: linalg_ops.norm(x, axis=1)
     for ids_shape in (), (3), (4, 3), (2, 3, 4):
       # Test ids rank 0, 1, 2, 3.
       ids = np.random.randint(
           params.shape[0], size=np.prod(ids_shape,
                                         dtype=np.int64)).reshape(ids_shape)
       # Compare nonsharded to gather.
       simple = embedding_ops._embedding_lookup_and_transform(
           params, ids, max_norm=l2_norm, transform_fn=transform).eval()
       self.assertAllClose(simple, array_ops.gather(params_norm, ids).eval())
       # Run a few different sharded versions.
       for procs in 1, 2, 3:
         stride = procs * math_ops.range(params.shape[0] // procs)
         split_params = [
             array_ops.gather(params, stride + p) for p in xrange(procs)
         ]
         sharded = embedding_ops._embedding_lookup_and_transform(
             split_params, ids, max_norm=l2_norm,
             transform_fn=transform).eval()
         self.assertAllEqual(simple, sharded)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:35,代码来源:embedding_ops_test.py

示例6: body

    def body(i, prev_c, prev_h, actions, log_probs):
      # pylint: disable=g-long-lambda
      signal = control_flow_ops.cond(
          math_ops.equal(i, 0),
          lambda: array_ops.tile(device_go_embedding,
                                 [self.hparams.num_children, 1]),
          lambda: embedding_ops.embedding_lookup(device_embeddings,
                                                 actions.read(i - 1))
      )
      if self.hparams.keep_prob is not None:
        signal = nn_ops.dropout(signal, self.hparams.keep_prob)
      next_c, next_h = lstm(signal, prev_c, prev_h, w_lstm, forget_bias)
      query = math_ops.matmul(next_h, attn_w_2)
      query = array_ops.reshape(
          query, [self.hparams.num_children, 1, self.hparams.hidden_size])
      query = math_ops.tanh(query + attn_mem)
      query = array_ops.reshape(query, [
          self.hparams.num_children * self.num_groups, self.hparams.hidden_size
      ])
      query = math_ops.matmul(query, attn_v)
      query = array_ops.reshape(query,
                                [self.hparams.num_children, self.num_groups])
      query = nn_ops.softmax(query)
      query = array_ops.reshape(query,
                                [self.hparams.num_children, self.num_groups, 1])
      query = math_ops.reduce_sum(attn_mem * query, axis=1)
      query = array_ops.concat([next_h, query], axis=1)
      logits = math_ops.matmul(query, device_softmax)
      logits /= self.hparams.temperature
      if self.hparams.tanh_constant > 0:
        logits = math_ops.tanh(logits) * self.hparams.tanh_constant
      if self.hparams.logits_std_noise > 0:
        num_in_logits = math_ops.cast(
            array_ops.size(logits), dtype=dtypes.float32)
        avg_norm = math_ops.divide(
            linalg_ops.norm(logits), math_ops.sqrt(num_in_logits))
        logits_noise = random_ops.random_normal(
            array_ops.shape(logits),
            stddev=self.hparams.logits_std_noise * avg_norm)
        logits = control_flow_ops.cond(
            self.global_step > self.hparams.stop_noise_step, lambda: logits,
            lambda: logits + logits_noise)

      if mode == "sample":
        next_y = random_ops.multinomial(logits, 1, seed=self.hparams.seed)
      elif mode == "greedy":
        next_y = math_ops.argmax(logits, 1)
      elif mode == "target":
        next_y = array_ops.slice(y, [0, i], [-1, 1])
      else:
        raise NotImplementedError
      next_y = math_ops.to_int32(next_y)
      next_y = array_ops.reshape(next_y, [self.hparams.num_children])
      actions = actions.write(i, next_y)
      log_probs += nn_ops.sparse_softmax_cross_entropy_with_logits(
          logits=logits, labels=next_y)
      return i + 1, next_c, next_h, actions, log_probs
开发者ID:neuroradiology,项目名称:tensorflow,代码行数:57,代码来源:hierarchical_controller.py

示例7: _verifySolve

  def _verifySolve(self,
                   x,
                   y,
                   dtype,
                   use_placeholder,
                   fast,
                   l2_regularizer,
                   batch_shape=()):
    if not fast and l2_regularizer != 0:
      # The slow path does not support regularization.
      return
    maxdim = np.max(x.shape)
    if dtype == np.float32 or dtype == np.complex64:
      tol = maxdim * 5e-4
    else:
      tol = maxdim * 5e-7
      a = x.astype(dtype)
      b = y.astype(dtype)
      if dtype in [np.complex64, np.complex128]:
        a.imag = a.real
        b.imag = b.real
      # numpy.linalg.lstqr does not batching, so we just solve a single system
      # and replicate the solution. and residual norm.
      np_ans = _SolveWithNumpy(x, y, l2_regularizer=l2_regularizer)
      np_r = np.dot(np.conj(a.T), b - np.dot(a, np_ans))
      np_r_norm = np.sqrt(np.sum(np.conj(np_r) * np_r))
      if batch_shape is not ():
        a = np.tile(a, batch_shape + (1, 1))
        b = np.tile(b, batch_shape + (1, 1))
        np_ans = np.tile(np_ans, batch_shape + (1, 1))
        np_r_norm = np.tile(np_r_norm, batch_shape)
      with self.cached_session(use_gpu=fast) as sess:
        if use_placeholder:
          a_ph = array_ops.placeholder(dtypes.as_dtype(dtype))
          b_ph = array_ops.placeholder(dtypes.as_dtype(dtype))
          feed_dict = {a_ph: a, b_ph: b}
          tf_ans = linalg_ops.matrix_solve_ls(
              a_ph, b_ph, fast=fast, l2_regularizer=l2_regularizer)
        else:
          tf_ans = linalg_ops.matrix_solve_ls(
              a, b, fast=fast, l2_regularizer=l2_regularizer)
          feed_dict = {}
          self.assertEqual(np_ans.shape, tf_ans.get_shape())
        if l2_regularizer == 0:
          # The least squares solution should satisfy A^H * (b - A*x) = 0.
          tf_r = b - math_ops.matmul(a, tf_ans)
          tf_r = math_ops.matmul(a, tf_r, adjoint_a=True)
          tf_r_norm = linalg_ops.norm(tf_r, ord="fro", axis=[-2, -1])
          tf_ans_val, tf_r_norm_val = sess.run(
              [tf_ans, tf_r_norm], feed_dict=feed_dict)
          self.assertAllClose(np_r_norm, tf_r_norm_val, atol=tol, rtol=tol)
        else:
          tf_ans_val = sess.run(tf_ans, feed_dict=feed_dict)

      self.assertEqual(np_ans.shape, tf_ans_val.shape)
      self.assertAllClose(np_ans, tf_ans_val, atol=2 * tol, rtol=2 * tol)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:56,代码来源:matrix_solve_ls_op_test.py

示例8: mean_only_frechet_classifier_distance_from_activations

def mean_only_frechet_classifier_distance_from_activations(
    real_activations, generated_activations):
  """Classifier distance for evaluating a generative model from activations.

  Given two Gaussian distribution with means m and m_w and covariance matrices
  C and C_w, this function calcuates

                                |m - m_w|^2

  which captures how different the distributions of real images and generated
  images (or more accurately, their visual features) are. Note that unlike the
  Inception score, this is a true distance and utilizes information about real
  world images.

  Note that when computed using sample means and sample covariance matrices,
  Frechet distance is biased. It is more biased for small sample sizes. (e.g.
  even if the two distributions are the same, for a small sample size, the
  expected Frechet distance is large). It is important to use the same
  sample size to compute frechet classifier distance when comparing two
  generative models.

  In this variant, we only compute the difference between the means of the
  fitted Gaussians. The computation leads to O(n) vs. O(n^2) memory usage, yet
  still retains much of the same information as FID.

  Args:
    real_activations: 2D array of activations of real images of size
      [num_images, num_dims] to use to compute Frechet Inception distance.
    generated_activations: 2D array of activations of generated images of size
      [num_images, num_dims] to use to compute Frechet Inception distance.

  Returns:
    The mean-only Frechet Inception distance. A floating-point scalar of the
    same type as the output of the activations.
  """
  real_activations.shape.assert_has_rank(2)
  generated_activations.shape.assert_has_rank(2)

  activations_dtype = real_activations.dtype
  if activations_dtype != dtypes.float64:
    real_activations = math_ops.to_double(real_activations)
    generated_activations = math_ops.to_double(generated_activations)

  # Compute means of activations.
  m = math_ops.reduce_mean(real_activations, 0)
  m_w = math_ops.reduce_mean(generated_activations, 0)

  # Next the distance between means.
  mean = math_ops.square(linalg_ops.norm(m - m_w))  # This uses the L2 norm.
  mofid = mean
  if activations_dtype != dtypes.float64:
    mofid = math_ops.cast(mofid, activations_dtype)

  return mofid
开发者ID:PuchatekwSzortach,项目名称:tensorflow,代码行数:54,代码来源:classifier_metrics_impl.py

示例9: Test

 def Test(self):
   np.random.seed(1)
   n = shape_[-1]
   batch_shape = shape_[:-2]
   np_dtype = dtype_.as_numpy_dtype
   a = np.random.uniform(
       low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
   if dtype_.is_complex:
     a += 1j * np.random.uniform(
         low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
   a += np.conj(a.T)
   a = np.tile(a, batch_shape + (1, 1))
   # Optimal stepsize for central difference is O(epsilon^{1/3}).
   epsilon = np.finfo(np_dtype).eps
   delta = 0.1 * epsilon**(1.0 / 3.0)
   # tolerance obtained by looking at actual differences using
   # np.linalg.norm(theoretical-numerical, np.inf) on -mavx build
   if dtype_ in (dtypes_lib.float32, dtypes_lib.complex64):
     tol = 1e-2
   else:
     tol = 1e-7
   with self.test_session():
     tf_a = constant_op.constant(a)
     if compute_v_:
       tf_e, tf_v = linalg_ops.self_adjoint_eig(tf_a)
       # (complex) Eigenvectors are only unique up to an arbitrary phase
       # We normalize the vectors such that the first component has phase 0.
       reference = tf_v / linalg_ops.norm(
           tf_v[..., 0:1, :], axis=-1, keep_dims=True)
       tf_v *= math_ops.conj(reference)
       outputs = [tf_e, tf_v]
     else:
       tf_e = linalg_ops.self_adjoint_eigvals(tf_a)
       outputs = [tf_e,]
     for b in outputs:
       x_init = np.random.uniform(
           low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
       if dtype_.is_complex:
         x_init += 1j * np.random.uniform(
             low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
       x_init += np.conj(x_init.T)
       x_init = np.tile(x_init, batch_shape + (1, 1))
       theoretical, numerical = gradient_checker.compute_gradient(
           tf_a,
           tf_a.get_shape().as_list(),
           b,
           b.get_shape().as_list(),
           x_init_value=x_init,
           delta=delta)
       self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:50,代码来源:self_adjoint_eig_op_test.py

示例10: make_grouping_predictions

  def make_grouping_predictions(self, input_layer, reuse=None):
    """model that predicts grouping (grouping_actions).

    Args:
      input_layer: group_input_layer
      reuse: reuse

    Returns:
       grouping_actions: actions
       grouping_log_probs: log probabilities corresponding to actions
    """
    with variable_scope.variable_scope(self.hparams.name, reuse=True):
      # input_layer: tensor of size [1, num_ops, hidden_size]
      w_grouping_ff = variable_scope.get_variable("w_grouping_ff")
      w_grouping_softmax = variable_scope.get_variable("w_grouping_softmax")

    batch_size = array_ops.shape(input_layer)[0]
    embedding_dim = array_ops.shape(input_layer)[2]

    reshaped = array_ops.reshape(input_layer,
                                 [batch_size * self.num_ops, embedding_dim])
    ff_output = math_ops.matmul(reshaped, w_grouping_ff)
    logits = math_ops.matmul(ff_output, w_grouping_softmax)
    if self.hparams.logits_std_noise > 0:
      num_in_logits = math_ops.cast(
          array_ops.size(logits), dtype=dtypes.float32)
      avg_norm = math_ops.divide(
          linalg_ops.norm(logits), math_ops.sqrt(num_in_logits))
      logits_noise = random_ops.random_normal(
          array_ops.shape(logits),
          stddev=self.hparams.logits_std_noise * avg_norm)
      logits = control_flow_ops.cond(
          self.global_step > self.hparams.stop_noise_step, lambda: logits,
          lambda: logits + logits_noise)
    logits = array_ops.reshape(logits,
                               [batch_size * self.num_ops, self.num_groups])
    actions = random_ops.multinomial(logits, 1, seed=self.hparams.seed)
    actions = math_ops.to_int32(actions)
    actions = array_ops.reshape(actions, [batch_size, self.num_ops])
    action_label = array_ops.reshape(actions, [-1])
    log_probs = nn_ops.sparse_softmax_cross_entropy_with_logits(
        logits=logits, labels=action_label)
    log_probs = array_ops.reshape(log_probs, [batch_size, -1])
    log_probs = math_ops.reduce_sum(log_probs, 1)
    grouping_actions = actions
    grouping_log_probs = log_probs
    return grouping_actions, grouping_log_probs
开发者ID:neuroradiology,项目名称:tensorflow,代码行数:47,代码来源:hierarchical_controller.py

示例11: testTransform

 def testTransform(self):
   # This tests all combinations of:
   #   - ids rank 0, 1, >1
   #   - params sharded/unsharded
   # It always applies max_norm.
   np.random.seed(8)
   l2_norm = 2.
   with self.cached_session():
     # Param values are in [l2_norm, l2_norm+1) so it will always clip.
     params = np.random.rand(6, 3) + l2_norm
     params_norm = l2_norm * params / np.sqrt(
         np.sum(params * params, axis=1, keepdims=True))
     # Compute the norm of each embedding. This will change the embedding
     # rank to 0.
     params_norm = np.linalg.norm(params_norm, axis=1)
     transform = lambda x: linalg_ops.norm(x, axis=1)
     for ids_shape in (), (3), (4, 3), (2, 3, 4):
       # Test ids rank 0, 1, 2, 3.
       ids = np.random.randint(
           params.shape[0], size=np.prod(ids_shape,
                                         dtype=np.int64)).reshape(ids_shape)
       # Compare nonsharded to gather.
       simple = embedding_ops._embedding_lookup_and_transform(
           params, ids, max_norm=l2_norm, transform_fn=transform).eval()
       self.assertAllClose(simple, array_ops.gather(params_norm, ids).eval())
       # Run a few different sharded versions.
       for procs in 1, 2, 3:
         stride = procs * math_ops.range(params.shape[0] // procs)
         split_params = [
             array_ops.gather(params, stride + p) for p in xrange(procs)
         ]
         sharded = embedding_ops._embedding_lookup_and_transform(
             split_params, ids, max_norm=l2_norm,
             transform_fn=transform).eval()
         # assertAllClose is used here as different implementations of sqrt may
         # be used to compute each of the values being compared.  For example,
         # on AVX512 builds the embedding operation makes use of Eigen's fast
         # vectorized square root algorithm for doubles.  These different
         # implementations of sqrt are not guaranteed to produce exactly the
         # same results. Therefore, an exact comparison cannot be made.
         self.assertAllClose(simple, sharded)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:41,代码来源:embedding_ops_test.py

示例12: testBadOrder

  def testBadOrder(self):
    matrix = [[0., 1.], [2., 3.]]
    for ord_ in "fro", -7, -1.1, 0:
      with self.assertRaisesRegexp(ValueError,
                                   "'ord' must be a supported vector norm"):
        linalg_ops.norm(matrix, ord=ord_)

    for ord_ in "fro", -7, -1.1, 0:
      with self.assertRaisesRegexp(ValueError,
                                   "'ord' must be a supported vector norm"):
        linalg_ops.norm(matrix, ord=ord_, axis=-1)

    for ord_ in "foo", -7, -1.1, 1.1:
      with self.assertRaisesRegexp(ValueError,
                                   "'ord' must be a supported matrix norm"):
        linalg_ops.norm(matrix, ord=ord_, axis=[-2, -1])
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:16,代码来源:norm_op_test.py

示例13: operator_and_matrix

  def operator_and_matrix(
      self, build_info, dtype, use_placeholder,
      ensure_self_adjoint_and_pd=False):
    shape = list(build_info.shape)
    reflection_axis = linear_operator_test_util.random_sign_uniform(
        shape[:-1], minval=1., maxval=2., dtype=dtype)
    # Make sure unit norm.
    reflection_axis = reflection_axis / linalg_ops.norm(
        reflection_axis, axis=-1, keepdims=True)

    lin_op_reflection_axis = reflection_axis

    if use_placeholder:
      lin_op_reflection_axis = array_ops.placeholder_with_default(
          reflection_axis, shape=None)

    operator = householder.LinearOperatorHouseholder(lin_op_reflection_axis)

    mat = reflection_axis[..., array_ops.newaxis]
    matrix = -2 * math_ops.matmul(mat, mat, adjoint_b=True)
    matrix = array_ops.matrix_set_diag(
        matrix, 1. + array_ops.matrix_diag_part(matrix))

    return operator, matrix
开发者ID:aritratony,项目名称:tensorflow,代码行数:24,代码来源:linear_operator_householder_test.py

示例14: frechet_classifier_distance_from_activations

def frechet_classifier_distance_from_activations(
    real_activations, generated_activations):
  """Classifier distance for evaluating a generative model.

  This is based on the Frechet Inception distance, but for an arbitrary
  classifier.

  This technique is described in detail in https://arxiv.org/abs/1706.08500.
  Given two Gaussian distribution with means m and m_w and covariance matrices
  C and C_w, this function calcuates

  |m - m_w|^2 + Tr(C + C_w - 2(C * C_w)^(1/2))

  which captures how different the distributions of real images and generated
  images (or more accurately, their visual features) are. Note that unlike the
  Inception score, this is a true distance and utilizes information about real
  world images.

  Note that when computed using sample means and sample covariance matrices,
  Frechet distance is biased. It is more biased for small sample sizes. (e.g.
  even if the two distributions are the same, for a small sample size, the
  expected Frechet distance is large). It is important to use the same
  sample size to compute frechet classifier distance when comparing two
  generative models.

  Args:
    real_activations: Real images to use to compute Frechet Inception distance.
    generated_activations: Generated images to use to compute Frechet Inception
      distance.

  Returns:
    The Frechet Inception distance. A floating-point scalar of the same type
    as the output of the activations.
  """
  real_activations.shape.assert_has_rank(2)
  generated_activations.shape.assert_has_rank(2)

  activations_dtype = real_activations.dtype
  if activations_dtype != dtypes.float64:
    real_activations = math_ops.to_double(real_activations)
    generated_activations = math_ops.to_double(generated_activations)

  # Compute mean and covariance matrices of activations.
  m = math_ops.reduce_mean(real_activations, 0)
  m_v = math_ops.reduce_mean(generated_activations, 0)
  num_examples = math_ops.to_double(array_ops.shape(real_activations)[0])

  # sigma = (1 / (n - 1)) * (X - mu) (X - mu)^T
  real_centered = real_activations - m
  sigma = math_ops.matmul(
      real_centered, real_centered, transpose_a=True) / (num_examples - 1)

  gen_centered = generated_activations - m_v
  sigma_v = math_ops.matmul(
      gen_centered, gen_centered, transpose_a=True) / (num_examples - 1)

  # Find the Tr(sqrt(sigma sigma_v)) component of FID
  sqrt_trace_component = trace_sqrt_product(sigma, sigma_v)

  # Compute the two components of FID.

  # First the covariance component.
  # Here, note that trace(A + B) = trace(A) + trace(B)
  trace = math_ops.trace(sigma + sigma_v) - 2.0 * sqrt_trace_component

  # Next the distance between means.
  mean = math_ops.square(linalg_ops.norm(m - m_v))  # This uses the L2 norm.
  fid = trace + mean
  if activations_dtype != dtypes.float64:
    fid = math_ops.cast(fid, activations_dtype)

  return fid
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:72,代码来源:classifier_metrics_impl.py

示例15: frechet_classifier_distance

def frechet_classifier_distance(real_images,
                                generated_images,
                                classifier_fn,
                                num_batches=1):
  """Classifier distance for evaluating a conditional generative model.

  This is based on the Frechet Inception distance, but for an arbitrary
  classifier.

  This technique is described in detail in https://arxiv.org/abs/1706.08500.
  Given two Gaussian distribution with means m and m_w and covariance matrices
  C and C_w, this function calcuates

  |m - m_w|^2 + Tr(C + C_w - 2(C * C_w)^(1/2))

  which captures how different the distributions of real images and generated
  images (or more accurately, their visual features) are. Note that unlike the
  Inception score, this is a true distance and utilizes information about real
  world images.

  Args:
    real_images: Real images to use to compute Frechet Inception distance.
    generated_images: Generated images to use to compute Frechet Inception
      distance.
    classifier_fn: A function that takes images and produces activations
      based on a classifier.
    num_batches: Number of batches to split images in to in order to
      efficiently run them through the classifier network.

  Returns:
    The Frechet Inception distance. A floating-point scalar.
  """

  real_images_list = array_ops.split(
      real_images, num_or_size_splits=num_batches)
  generated_images_list = array_ops.split(
      generated_images, num_or_size_splits=num_batches)

  imgs = array_ops.stack(real_images_list + generated_images_list)

  # Compute the activations using the memory-efficient `map_fn`.
  activations = functional_ops.map_fn(
      fn=classifier_fn,
      elems=imgs,
      parallel_iterations=1,
      back_prop=False,
      swap_memory=True,
      name='RunClassifier')

  # Split the activations by the real and generated images.
  real_a, gen_a = array_ops.split(activations, [num_batches, num_batches], 0)

  # Ensure the activations have the right shapes.
  real_a = array_ops.concat(array_ops.unstack(real_a), 0)
  gen_a = array_ops.concat(array_ops.unstack(gen_a), 0)
  real_a.shape.assert_has_rank(2)
  gen_a.shape.assert_has_rank(2)

  # Compute mean and covariance matrices of activations.
  m = math_ops.reduce_mean(real_a, 0)
  m_v = math_ops.reduce_mean(gen_a, 0)
  dim = math_ops.to_float(array_ops.shape(m)[0])
  sigma = math_ops.matmul(real_a - m, real_a - m, transpose_b=True) / dim
  sigma_v = math_ops.matmul(gen_a - m, gen_a - m, transpose_b=True) / dim

  # Take matrix square root of the product of covariance matrices.
  sqcc = _matrix_square_root(math_ops.matmul(sigma, sigma_v))

  # Compute the two components of FID.
  trace = math_ops.trace(sigma + sigma_v - 2.0 * sqcc)
  mean = math_ops.square(linalg_ops.norm(m - m_v))  # This uses the L2 norm.
  fid = trace + mean

  return fid
开发者ID:1000sprites,项目名称:tensorflow,代码行数:74,代码来源:classifier_metrics_impl.py


注:本文中的tensorflow.python.ops.linalg_ops.norm函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。