当前位置: 首页>>代码示例>>Python>>正文


Python init_ops.truncated_normal_initializer函数代码示例

本文整理汇总了Python中tensorflow.python.ops.init_ops.truncated_normal_initializer函数的典型用法代码示例。如果您正苦于以下问题:Python truncated_normal_initializer函数的具体用法?Python truncated_normal_initializer怎么用?Python truncated_normal_initializer使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了truncated_normal_initializer函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testInitializerDifferent

 def testInitializerDifferent(self):
   for dtype in [dtypes.float32, dtypes.float64]:
     init1 = init_ops.truncated_normal_initializer(
         0.0, 1.0, seed=1, dtype=dtype)
     init2 = init_ops.truncated_normal_initializer(
         0.0, 1.0, seed=2, dtype=dtype)
     self.assertFalse(identicaltest(self, init1, init2))
开发者ID:HughKu,项目名称:tensorflow,代码行数:7,代码来源:init_ops_test.py

示例2: testInitFromPartitionVar

  def testInitFromPartitionVar(self):
    checkpoint_dir = self.get_temp_dir()
    with self.test_session() as session:
      v1 = _create_partition_checkpoints(session, checkpoint_dir)

    # New graph and session.
    with ops.Graph().as_default() as g:
      with self.test_session(graph=g) as session:
        with variable_scope.variable_scope("some_scope"):
          my1 = variable_scope.get_variable(
              name="my1",
              shape=[100, 100],
              initializer=init_ops.truncated_normal_initializer(0.5),
              partitioner=partitioned_variables.min_max_variable_partitioner(
                  max_partitions=5, axis=0, min_slice_size=8 << 10))
          my1_var_list = my1._get_variable_list()
        with variable_scope.variable_scope("some_other_scope"):
          my2 = variable_scope.get_variable(
              name="var1",
              shape=[100, 100],
              initializer=init_ops.truncated_normal_initializer(0.5),
              partitioner=partitioned_variables.min_max_variable_partitioner(
                  max_partitions=5, axis=0, min_slice_size=8 << 10))
          my2_var_list = my2._get_variable_list()

        checkpoint_utils.init_from_checkpoint(checkpoint_dir, {
            "scope/var1": "some_scope/my1",
            "scope/": "some_other_scope/"})

        session.run(variables.global_variables_initializer())
        my1_values = session.run(my1_var_list)
        self.assertAllEqual(my1_values, v1)
        my2_values = session.run(my2_var_list)
        self.assertAllEqual(my2_values, v1)

    # New graph and session.
    with ops.Graph().as_default() as g:
      with self.test_session(graph=g) as session:
        with variable_scope.variable_scope("some_scope"):
          my1 = variable_scope.get_variable(
              name="my1",
              shape=[100, 100],
              initializer=init_ops.truncated_normal_initializer(0.5),
              partitioner=partitioned_variables.min_max_variable_partitioner(
                  max_partitions=5, axis=0, min_slice_size=8 << 10))
          my1_var_list = my1._get_variable_list()

        checkpoint_utils.init_from_checkpoint(checkpoint_dir,
                                              {"scope/var1": my1_var_list,})

        session.run(variables.global_variables_initializer())
        my1_values = session.run(my1_var_list)
        self.assertAllEqual(my1_values, v1)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:53,代码来源:checkpoint_utils_test.py

示例3: _define_vars

  def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner):

      self.tree_parameters = variable_scope.get_variable(
          name='tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features_per_node],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))
开发者ID:1000sprites,项目名称:tensorflow,代码行数:14,代码来源:decisions_to_data.py

示例4: testWithScopes

  def testWithScopes(self):
    init_value0 = np.asarray([1.0, 3.0, 9.0]).reshape((1, 3, 1))
    init_value1 = np.asarray([2.0, 4.0, 6.0, 8.0]).reshape((2, 1, 2))

    with self.test_session() as sess:
      initializer = init_ops.truncated_normal_initializer(stddev=.1)

      with variable_scope.variable_scope('my_model/my_layer0'):
        var0 = variables_lib2.variable(
            'my_var0', shape=[1, 3, 1], initializer=initializer)
      with variable_scope.variable_scope('my_model/my_layer1'):
        var1 = variables_lib2.variable(
            'my_var1', shape=[2, 1, 2], initializer=initializer)

      var_names_to_values = {
          'my_model/my_layer0/my_var0': init_value0,
          'my_model/my_layer1/my_var1': init_value1
      }
      init_fn = variables_lib2.assign_from_values_fn(var_names_to_values)

      # Initialize the variables.
      sess.run(variables_lib.global_variables_initializer())

      # Perform the assignment.
      init_fn(sess)

      # Request and test the variable values:
      var0, var1 = sess.run([var0, var1])
      self.assertAllEqual(init_value0, var0)
      self.assertAllEqual(init_value1, var1)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:30,代码来源:variables_test.py

示例5: load_embedding_initializer

def load_embedding_initializer(ckpt_path,
                               embedding_tensor_name,
                               new_vocab_size,
                               embedding_dim,
                               old_vocab_file,
                               new_vocab_file,
                               num_oov_buckets=0,
                               initializer=None):
  """Returns a variable initializer for loading pre-trained embeddings.

  Wrapper around `load_and_remap_matrix_initializer()` specialized for loading
  embedding weights and remapping according to the provided vocab files. See
  docs for `load_and_remap_matrix_initializer()` for more details.

  NOTE: Only for use with div-partitioned variables / vocabularies.

  Args:
    ckpt_path: Path to the TensorFlow checkpoint (version 2, `TensorBundle`)
      from which the old matrix `Tensor` will be loaded.
    embedding_tensor_name: Name of the 2-D `Tensor` to load from checkpoint.
    new_vocab_size: Number of entries in the new vocab.
    embedding_dim: `int` specifying the dimension of the embedding vectors from
      the checkpoint. Must match the number of columns in the old embedding
      matrix.
    old_vocab_file: A scalar `Tensor` of type `string` containing the
      path to the old vocabulary file.
    new_vocab_file: A scalar `Tensor` of type `string` containing the
      path to the new vocabulary file.
    num_oov_buckets: `int` specifying the number of out-of-vocabulary
      buckets to use. Must be >= 0.
    initializer: Initializer function that accepts a 1-D tensor as the arg to
      specify the shape of the returned tensor. If `None`, defaults to using
      `truncated_normal_initializer()`.

  Returns:
    A variable initializer function.
  """
  if initializer is None:
    # TODO(b/25671353): This should be kept in sync with the stddev used by
    # feature_column.py's _EmbeddingColumn.
    initializer = init_ops.truncated_normal_initializer(
        stddev=1.0 /
        math_ops.sqrt(math_ops.cast(embedding_dim, dtypes.float32)))

  return load_and_remap_matrix_initializer(
      ckpt_path=ckpt_path,
      old_tensor_name=embedding_tensor_name,
      new_row_vocab_size=new_vocab_size,
      new_col_vocab_size=embedding_dim,
      old_row_vocab_file=old_vocab_file,
      new_row_vocab_file=new_vocab_file,
      old_col_vocab_file=None,
      new_col_vocab_file=None,
      num_row_oov_buckets=num_oov_buckets,
      num_col_oov_buckets=0,
      initializer=initializer)
开发者ID:vaccine,项目名称:tensorflow,代码行数:56,代码来源:checkpoint_ops.py

示例6: _WeightInit

  def _WeightInit(self, stddev):
    """Returns truncated normal variable initializer.

    Function is defined purely to shorten the name so that it stops wrapping.

    Args:
      stddev: Standard deviation of normal variable.

    Returns:
      An initialized that initializes with a truncated normal variable.
    """
    return init_ops.truncated_normal_initializer(stddev=stddev)
开发者ID:houhaichao830,项目名称:tensorflow,代码行数:12,代码来源:quantize_test.py

示例7: _random_weights

  def _random_weights(self, size=50, num_shards=1):
    assert size > 0
    assert num_shards > 0
    assert num_shards <= size

    embedding_weights = partitioned_variables.create_partitioned_variables(
        shape=[size],
        slicing=[num_shards],
        initializer=init_ops.truncated_normal_initializer(
            mean=0.0, stddev=1.0, dtype=dtypes.float32))
    for w in embedding_weights:
      w.initializer.run()
    return embedding_weights
开发者ID:AnishShah,项目名称:tensorflow,代码行数:13,代码来源:embedding_ops_test.py

示例8: _random_weights

  def _random_weights(self, size=50, num_shards=1):
    assert size > 0
    assert num_shards > 0
    assert num_shards <= size

    embedding_weights = list(variable_scope.get_variable(
        "embedding_weights",
        shape=[size],
        partitioner=partitioned_variables.fixed_size_partitioner(num_shards),
        initializer=init_ops.truncated_normal_initializer(
            mean=0.0, stddev=1.0, dtype=dtypes.float32)))
    for w in embedding_weights:
      w.initializer.run()
    return embedding_weights
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:14,代码来源:embedding_ops_test.py

示例9: __new__

 def __new__(cls,
             sparse_id_column,
             dimension,
             combiner="mean",
             initializer=None):
   if initializer is not None and not callable(initializer):
     raise ValueError("initializer must be callable if specified.")
   if initializer is None:
     stddev = 1 / math.sqrt(sparse_id_column.length)
     # TODO(b/25671353): Better initial value?
     initializer = init_ops.truncated_normal_initializer(mean=0.0,
                                                         stddev=stddev)
   return super(_EmbeddingColumn, cls).__new__(cls, sparse_id_column,
                                               dimension, combiner,
                                               initializer)
开发者ID:Ambier,项目名称:tensorflow,代码行数:15,代码来源:feature_column.py

示例10: __new__

  def __new__(cls,
              vocabulary_size,
              dimension,
              initializer=None,
              combiner='mean'):
    """Embedding table configuration.

    Args:
      vocabulary_size: Number of vocabulary (/rows) in the table.
      dimension: The embedding dimension.
      initializer: A variable initializer function to be used in embedding
        variable initialization. If not specified, defaults to
        `tf.truncated_normal_initializer` with mean `0.0` and standard deviation
        `1/sqrt(dimension)`.
      combiner: A string specifying how to reduce if there are multiple entries
        in a single row. Currently 'mean', 'sqrtn', 'sum' and None are
        supported, with 'mean' the default. 'sqrtn' often achieves good
        accuracy, in particular with bag-of-words columns. For more information,
        see `tf.nn.embedding_lookup_sparse`. None is only valid for dense rather
        than sparse tensors.

    Returns:
      `TableConfig`.

    Raises:
      ValueError: if `vocabulary_size` is not positive integer.
      ValueError: if `dimension` is not positive integer.
      ValueError: if `initializer` is specified and is not callable.
      ValueError: if `combiner` is not supported.
    """
    if not isinstance(vocabulary_size, int) or vocabulary_size < 1:
      raise ValueError('Invalid vocabulary_size {}.'.format(vocabulary_size))

    if not isinstance(dimension, int) or dimension < 1:
      raise ValueError('Invalid dimension {}.'.format(dimension))

    if (initializer is not None) and (not callable(initializer)):
      raise ValueError('initializer must be callable if specified.')
    if initializer is None:
      initializer = init_ops.truncated_normal_initializer(
          mean=0.0, stddev=1 / math.sqrt(dimension))

    if combiner not in ('mean', 'sum', 'sqrtn', None):
      raise ValueError('Invalid combiner {}'.format(combiner))

    return super(TableConfig, cls).__new__(cls, vocabulary_size, dimension,
                                           initializer, combiner)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:47,代码来源:tpu_embedding.py

示例11: _create_embedding_lookup

def _create_embedding_lookup(input_tensor, vocab_size, dimension,
                             weight_collections, stddev, combiner, trainable,
                             name):
  """Creates embedding variable and does a lookup.

  Args:
    input_tensor: A tensor which should contain sparse id to look up.
    vocab_size: An integer specifying the vocabulary size.
    dimension: An integer specifying the embedding vector dimension.
    weight_collections: List of graph collections to which weights are added.
    stddev: the standard deviation to be used in embedding initialization.
    combiner: A string specifying how to reduce if the sparse column is
      multivalent. Currently "mean", "sqrtn" and "sum" are supported:
        * "sum": do not normalize features in the column
        * "mean": do l1 normalization on features in the column
        * "sqrtn": do l2 normalization on features in the column
      For more information: `tf.embedding_lookup_sparse`.
    trainable: If `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
    name: A string specifying the name of the embedding variable.

  Returns:
    A Tensor with shape [batch_size, dimension] and embedding Variable.
  """
  slicing = _max_size_embedding_partitioner()(vocab_size, dimension)
  logging.info("Slicing=%s for name=%s, vocab_size=%d, embed_dim=%d",
               str(slicing), name, vocab_size, dimension)
  if stddev > 0:
    initializer = init_ops.truncated_normal_initializer(stddev=stddev)
  else:
    initializer = init_ops.zeros_initializer
  embeddings = partitioned_variables.create_partitioned_variables(
      shape=[vocab_size, dimension],
      slicing=slicing,
      initializer=initializer,
      dtype=dtypes.float32,
      collections=weight_collections,
      name=name,
      reuse=False,
      trainable=trainable)

  return contrib_embedding_ops.safe_embedding_lookup_sparse(
      embeddings,
      input_tensor,
      default_id=0,
      combiner=combiner,
      name=name), embeddings
开发者ID:Assassin0028,项目名称:tensorflow,代码行数:47,代码来源:feature_column.py

示例12: inception_v3_arg_scope

def inception_v3_arg_scope(weight_decay=0.00004,
                           stddev=0.1,
                           batch_norm_var_collection='moving_vars',
                           use_fused_batchnorm=True):
  """Defines the default InceptionV3 arg scope.

  Args:
    weight_decay: The weight decay to use for regularizing the model.
    stddev: The standard deviation of the trunctated normal weight initializer.
    batch_norm_var_collection: The name of the collection for the batch norm
      variables.
    use_fused_batchnorm: Enable fused batchnorm.

  Returns:
    An `arg_scope` to use for the inception v3 model.
  """
  batch_norm_params = {
      # Decay for the moving averages.
      'decay': 0.9997,
      # epsilon to prevent 0s in variance.
      'epsilon': 0.001,
      # collection containing update_ops.
      'updates_collections': ops.GraphKeys.UPDATE_OPS,
      # Use fused batch norm if possible.
      'fused': use_fused_batchnorm,
      # collection containing the moving mean and moving variance.
      'variables_collections': {
          'beta': None,
          'gamma': None,
          'moving_mean': [batch_norm_var_collection],
          'moving_variance': [batch_norm_var_collection],
      }
  }

  # Set weight_decay for weights in Conv and FC layers.
  with arg_scope(
      [layers.conv2d, layers_lib.fully_connected],
      weights_regularizer=regularizers.l2_regularizer(weight_decay)):
    with arg_scope(
        [layers.conv2d],
        weights_initializer=init_ops.truncated_normal_initializer(
            stddev=stddev),
        activation_fn=nn_ops.relu,
        normalizer_fn=layers_lib.batch_norm,
        normalizer_params=batch_norm_params) as sc:
      return sc
开发者ID:1000sprites,项目名称:tensorflow,代码行数:46,代码来源:inception_v3.py

示例13: _create_partition_checkpoints

def _create_partition_checkpoints(sess, checkpoint_dir):
  checkpoint_prefix = os.path.join(checkpoint_dir, "model")
  checkpoint_state_name = "checkpoint"
  v1 = variable_scope.get_variable(
      name="var1",
      shape=[100, 100],
      initializer=init_ops.truncated_normal_initializer(0.5),
      partitioner=partitioned_variables.min_max_variable_partitioner(
          max_partitions=5, axis=0, min_slice_size=8 << 10))
  sess.run(variables.global_variables_initializer())
  v1_value = sess.run(v1._get_variable_list())
  saver = saver_lib.Saver()
  saver.save(
      sess,
      checkpoint_prefix,
      global_step=0,
      latest_filename=checkpoint_state_name)
  return v1_value
开发者ID:willdzeng,项目名称:tensorflow,代码行数:18,代码来源:checkpoint_utils_test.py

示例14: _conv

def _conv(args, output_size, filter_size, stddev=0.001, bias=True, bias_start=0.0, scope=None):
  if args is None or (nest.is_sequence(args) and not args):
    raise ValueError("`args` must be specified")
  if not nest.is_sequence(args):
    args = [args]

  # Calculate the total size of arguments on dimension 3.
  # (batch_size x height x width x arg_size)
  total_arg_size = 0
  shapes = [a.get_shape().as_list() for a in args]
  height = shapes[0][1]
  width  = shapes[0][2]
  for shape in shapes:
    if len(shape) != 4:
      raise ValueError("Conv is expecting 3D arguments: %s" % str(shapes))
    if not shape[3]:
      raise ValueError("Conv expects shape[3] of arguments: %s" % str(shapes))
    if shape[1] == height and shape[2] == width:
      total_arg_size += shape[3]
    else :
      raise ValueError("Inconsistent height and width size in arguments: %s" % str(shapes))
  
  with vs.variable_scope(scope or "Conv"):
    kernel = vs.get_variable("Kernel", 
      [filter_size[0], filter_size[1], total_arg_size, output_size],
      initializer=init_ops.truncated_normal_initializer(stddev=stddev))
    
    if len(args) == 1:
      res = tf.nn.conv2d(args[0], kernel, [1, 1, 1, 1], padding='SAME')
    else:
      res = tf.nn.conv2d(array_ops.concat(3, args), kernel, [1, 1, 1, 1], padding='SAME')

    if not bias: return res
    bias_term = vs.get_variable( "Bias", [output_size],
      initializer=init_ops.constant_initializer(bias_start))
  return res + bias_term
开发者ID:TiancongHua,项目名称:ConvLSTMCell-tensorflow,代码行数:36,代码来源:ConvLSTMCell.py

示例15: inception_v3_base

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.contrib import layers
from tensorflow.contrib.framework.python.ops import arg_scope
from tensorflow.contrib.layers.python.layers import initializers
from tensorflow.contrib.layers.python.layers import layers as layers_lib
from tensorflow.contrib.layers.python.layers import regularizers
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import variable_scope

trunc_normal = lambda stddev: init_ops.truncated_normal_initializer(0.0, stddev)


def inception_v3_base(inputs,
                      final_endpoint='Mixed_7c',
                      min_depth=16,
                      depth_multiplier=1.0,
                      scope=None):
  """Inception model from http://arxiv.org/abs/1512.00567.

  Constructs an Inception v3 network from inputs to the given final endpoint.
  This method can construct the network up to the final inception block
  Mixed_7c.

  Note that the names of the layers in the paper do not correspond to the names
  of the endpoints registered by this function although they build the same
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:31,代码来源:inception_v3.py


注:本文中的tensorflow.python.ops.init_ops.truncated_normal_initializer函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。