当前位置: 首页>>代码示例>>Python>>正文


Python init_ops.random_uniform_initializer函数代码示例

本文整理汇总了Python中tensorflow.python.ops.init_ops.random_uniform_initializer函数的典型用法代码示例。如果您正苦于以下问题:Python random_uniform_initializer函数的具体用法?Python random_uniform_initializer怎么用?Python random_uniform_initializer使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了random_uniform_initializer函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: benchmarkTfRNNLSTMTraining

  def benchmarkTfRNNLSTMTraining(self):
    test_configs = self._GetTestConfig()
    for config_name, config in test_configs.items():
      num_layers = config["num_layers"]
      num_units = config["num_units"]
      batch_size = config["batch_size"]
      seq_length = config["seq_length"]

      with ops.Graph().as_default(), ops.device("/gpu:0"):
        inputs = seq_length * [
            array_ops.zeros([batch_size, num_units], dtypes.float32)
        ]
        initializer = init_ops.random_uniform_initializer(-0.01, 0.01, seed=127)

        cell = core_rnn_cell_impl.LSTMCell(
            num_units=num_units, initializer=initializer, state_is_tuple=True)
        multi_cell = core_rnn_cell_impl.MultiRNNCell([cell] * num_layers)
        outputs, final_state = core_rnn.static_rnn(
            multi_cell, inputs, dtype=dtypes.float32)
        trainable_variables = ops.get_collection(
            ops.GraphKeys.TRAINABLE_VARIABLES)
        gradients = gradients_impl.gradients([outputs, final_state],
                                             trainable_variables)
        training_op = control_flow_ops.group(*gradients)
        self._BenchmarkOp(training_op, "tf_rnn_lstm %s %s" %
                          (config_name, self._GetConfigDesc(config)))
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:26,代码来源:cudnn_rnn_ops_benchmark.py

示例2: _create_multi_lstm_cell_ops

def _create_multi_lstm_cell_ops(batch_size, num_units, input_depth,
                                num_layers, max_time, compiled):
  with variable_scope.variable_scope(
      "root",
      initializer=init_ops.random_uniform_initializer(-0.1, 0.1, seed=2)):
    inputs = variable_scope.get_variable(
        "inputs", initializer=random_ops.random_uniform(
            (max_time, batch_size, input_depth), seed=1))
    maybe_xla = lambda c: rnn_cell.CompiledWrapper(c) if compiled else c
    cell = core_rnn_cell_impl.MultiRNNCell(
        [maybe_xla(core_rnn_cell_impl.LSTMCell(num_units))
         for _ in range(num_layers)])
    initial_state = cell.zero_state(
        batch_size=batch_size, dtype=dtypes.float32)
    outputs, final_state = rnn.dynamic_rnn(
        cell=cell, inputs=inputs, initial_state=initial_state,
        time_major=True)
    flat_final_state = nest.flatten(final_state)
    trainable_variables = variables.trainable_variables()
    outputs_grad = gradients_impl.gradients(
        [outputs],
        trainable_variables + [inputs] + nest.flatten(initial_state))
    final_state_grad = gradients_impl.gradients(
        flat_final_state,
        trainable_variables + [inputs] + nest.flatten(initial_state))

    return {"outputs": outputs,
            "final_state": flat_final_state,
            "outputs_grad": outputs_grad,
            "final_state_grad": final_state_grad}
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:30,代码来源:rnn_cell_test.py

示例3: create_ops

 def create_ops():
   with variable_scope.variable_scope(
       "root",
       initializer=init_ops.random_uniform_initializer(
           -0.1, 0.1, seed=2)):
     inputs = random_ops.random_uniform((1,), seed=1)
     return inputs
开发者ID:1000sprites,项目名称:tensorflow,代码行数:7,代码来源:jit_test.py

示例4: testBlockGRUToGRUCellSingleStep

  def testBlockGRUToGRUCellSingleStep(self):
    with self.session(use_gpu=True, graph=ops.Graph()) as sess:
      batch_size = 4
      cell_size = 5
      input_size = 6

      seed = 1994
      initializer = init_ops.random_uniform_initializer(-0.01, 0.01, seed=seed)

      # Inputs
      x = array_ops.zeros([batch_size, input_size])
      h = array_ops.zeros([batch_size, cell_size])

      # Values for the inputs.
      x_value = np.random.rand(batch_size, input_size)
      h_value = np.random.rand(batch_size, cell_size)

      # Output from the basic GRU cell implementation.
      with vs.variable_scope("basic", initializer=initializer):
        output = rnn_cell.GRUCell(cell_size)(x, h)
        sess.run([variables.global_variables_initializer()])
        basic_res = sess.run([output], {x: x_value, h: h_value})

      # Output from the block GRU cell implementation.
      with vs.variable_scope("block", initializer=initializer):
        output = gru_ops.GRUBlockCell(cell_size)(x, h)
        sess.run([variables.global_variables_initializer()])
        block_res = sess.run([output], {x: x_value, h: h_value})

      self.assertEqual(len(block_res), len(basic_res))
      for block, basic in zip(block_res, basic_res):
        self.assertAllClose(block, basic)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:32,代码来源:gru_ops_test.py

示例5: __call__

  def __call__(self, inputs, state, scope=None):
    """Run the cell on embedded inputs."""
    with vs.variable_scope(scope or type(self).__name__):  # "EmbeddingWrapper"
      with ops.device("/cpu:0"):
        if self._embedding:
          embedding = self._embedding
        else:
          if self._initializer:
            initializer = self._initializer
          elif vs.get_variable_scope().initializer:
            initializer = vs.get_variable_scope().initializer
          else:
            # Default initializer for embeddings should have variance=1.
            sqrt3 = math.sqrt(3)  # Uniform(-sqrt(3), sqrt(3)) has variance=1.
            initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)
          embedding = vs.get_variable("embedding", [self._embedding_classes,
                                                    self._cell.input_size],
                                      initializer=initializer)
        embedded = embedding_ops.embedding_lookup(
            embedding, array_ops.reshape(inputs, [-1]))

        """print (embedded)
        print ("{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}")"""

    return self._cell(embedded, state)
开发者ID:chagge,项目名称:repository,代码行数:25,代码来源:rnn_cell.py

示例6: _Model

 def _Model(x):
   w = variable_scope.get_variable(
       "w", (64, 64),
       initializer=init_ops.random_uniform_initializer(seed=312))
   b = variable_scope.get_variable(
       "b", (64), initializer=init_ops.zeros_initializer()),
   return math_ops.sigmoid(math_ops.matmul(x, w) + b)
开发者ID:kadeng,项目名称:tensorflow,代码行数:7,代码来源:function_test.py

示例7: __call__

  def __call__(self, inputs, state, scope=None):
    """Run the cell on embedded inputs."""
    with _checked_scope(self, scope or "embedding_wrapper", reuse=self._reuse):
      with ops.device("/cpu:0"):
        if self._initializer:
          initializer = self._initializer
        elif vs.get_variable_scope().initializer:
          initializer = vs.get_variable_scope().initializer
        else:
          # Default initializer for embeddings should have variance=1.
          sqrt3 = math.sqrt(3)  # Uniform(-sqrt(3), sqrt(3)) has variance=1.
          initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)

        if type(state) is tuple:
          data_type = state[0].dtype
        else:
          data_type = state.dtype

        embedding = vs.get_variable(
            "embedding", [self._embedding_classes, self._embedding_size],
            initializer=initializer,
            dtype=data_type)
        embedded = embedding_ops.embedding_lookup(
            embedding, array_ops.reshape(inputs, [-1]))
    return self._cell(embedded, state)
开发者ID:LUTAN,项目名称:tensorflow,代码行数:25,代码来源:core_rnn_cell_impl.py

示例8: __call__

  def __call__(self, inputs, state, scope=None):
    """Run the cell on embedded inputs."""
    with vs.variable_scope(scope or type(self).__name__):  # "EmbeddingWrapper2"
      with ops.device("/cpu:0"):
        if self._initializer:
          initializer = self._initializer
        elif vs.get_variable_scope().initializer:
          initializer = vs.get_variable_scope().initializer
        else:
          # Default initializer for embeddings should have variance=1.
          sqrt3 = math.sqrt(3)  # Uniform(-sqrt(3), sqrt(3)) has variance=1.
          initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)
        embeddings = []
        for i in xrange(len(self._embedding_classes)):
            embeddings.append(vs.get_variable("embedding"+str(i), [self._embedding_classes[i],
                                                  self._embedding_sizes[i]],
                                    initializer=initializer))
        embedded = []
        for i in xrange(len(self._embedding_classes)):
            embedded.append(embedding_ops.embedding_lookup(
                  embeddings[i], array_ops.reshape(inputs[i], [-1])))

        finalEmbedded = tf.concat(1, embedded)

    return self._cell(finalEmbedded, state)
开发者ID:KentonMurray,项目名称:DeepDomers,代码行数:25,代码来源:MultipleInputEmbeddingWrapper.py

示例9: _get_initializer

def _get_initializer(init_bound, dtype, seed):
  if dtype == dtypes.float16:
    return _MaskedRandomUniformInitializer(
        -init_bound, init_bound, dtype=dtype, seed=seed)
  else:
    return init_ops.random_uniform_initializer(
        -init_bound, init_bound, dtype=dtype, seed=seed)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:7,代码来源:lstm_ops_test.py

示例10: model_fn

 def model_fn():
   x = variable_scope.get_variable(
       'x',
       shape=(2, 3),
       initializer=init_ops.random_uniform_initializer(
           1.0, 10.0, dtype=dtypes.float32))
   return array_ops.identity(x)
开发者ID:zhaoyongke,项目名称:tensorflow,代码行数:7,代码来源:collective_all_reduce_strategy_test.py

示例11: build

 def build(self, _):
   self.embedding = self.add_variable(
       'embedding_kernel',
       shape=[self.vocab_size, self.embedding_dim],
       dtype=np.float32,
       initializer=init_ops.random_uniform_initializer(-0.1, 0.1),
       trainable=True)
开发者ID:kylin9872,项目名称:tensorflow,代码行数:7,代码来源:model_subclassing_test.py

示例12: testWarmStartInputLayerEmbeddingColumn

  def testWarmStartInputLayerEmbeddingColumn(self):
    # Create old and new vocabs for embedding column "sc_vocab".
    prev_vocab_path = self._write_vocab(["apple", "banana", "guava", "orange"],
                                        "old_vocab")
    new_vocab_path = self._write_vocab(
        ["orange", "guava", "banana", "apple", "raspberry", "blueberry"],
        "new_vocab")

    # Save checkpoint from which to warm-start.
    with ops.Graph().as_default() as g:
      with self.test_session(graph=g) as sess:
        _ = variable_scope.get_variable(
            "input_layer/sc_vocab_embedding/embedding_weights",
            initializer=[[0.5, 0.4], [1., 1.1], [2., 2.2], [3., 3.3]])
        self._write_checkpoint(sess)

    def _partitioner(shape, dtype):  # pylint:disable=unused-argument
      # Partition each var into 2 equal slices.
      partitions = [1] * len(shape)
      partitions[0] = min(2, shape[0].value)
      return partitions

    # Create feature columns.
    sc_vocab = fc.categorical_column_with_vocabulary_file(
        "sc_vocab", vocabulary_file=new_vocab_path, vocabulary_size=6)
    emb_vocab = fc.embedding_column(
        categorical_column=sc_vocab,
        dimension=2,
        # Can't use constant_initializer with load_and_remap.  In practice,
        # use a truncated normal initializer.
        initializer=init_ops.random_uniform_initializer(
            minval=0.42, maxval=0.42))
    all_deep_cols = [emb_vocab]
    # New graph, new session with warmstarting.
    with ops.Graph().as_default() as g:
      with self.test_session(graph=g) as sess:
        cols_to_vars = {}
        with variable_scope.variable_scope("", partitioner=_partitioner):
          # Create the variables.
          fc.input_layer(
              features=self._create_dummy_inputs(),
              feature_columns=all_deep_cols,
              cols_to_vars=cols_to_vars)
        ws_settings = ws_util._WarmStartSettings(
            self.get_temp_dir(), col_to_prev_vocab={
                emb_vocab: prev_vocab_path
            })
        ws_util._warmstart_input_layer(cols_to_vars, ws_settings)
        sess.run(variables.global_variables_initializer())
        # Verify weights were correctly warmstarted. Var corresponding to
        # emb_vocab should be correctly warmstarted after vocab remapping.
        # Missing values are filled in with the EmbeddingColumn's initializer.
        self._assert_cols_to_vars(
            cols_to_vars, {
                emb_vocab: [
                    np.array([[3., 3.3], [2., 2.2], [1., 1.1]]),
                    np.array([[0.5, 0.4], [0.42, 0.42], [0.42, 0.42]])
                ]
            }, sess)
开发者ID:marcomarchesi,项目名称:tensorflow,代码行数:59,代码来源:warm_starting_util_test.py

示例13: testRandomInitializer

 def testRandomInitializer(self):
   # Sanity check that the slices uses a different seed when using a random
   # initializer function.
   with self.test_session():
     var0, var1 = partitioned_variables.create_partitioned_variables(
         [20, 12], [1, 2], init_ops.random_uniform_initializer())
     variables.global_variables_initializer().run()
     val0, val1 = var0.eval().flatten(), var1.eval().flatten()
     self.assertTrue(np.linalg.norm(val0 - val1) > 1e-6)
   # Negative test that proves that slices have the same values if
   # the random initializer uses a seed.
   with self.test_session():
     var0, var1 = partitioned_variables.create_partitioned_variables(
         [20, 12], [1, 2], init_ops.random_uniform_initializer(seed=201))
     variables.global_variables_initializer().run()
     val0, val1 = var0.eval().flatten(), var1.eval().flatten()
     self.assertAllClose(val0, val1)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:17,代码来源:partitioned_variables_test.py

示例14: _build

    def _build(self):
        """ build embedding table and
        build position embedding table if timing=="emb"

        :return:
        """
        self._embeddings = variable_scope.get_variable(
            name=(self._name or "embedding_table"),
            shape=[self._vocab_size, self._dimension],
            initializer=init_ops.random_uniform_initializer(
                -self._init_scale, self._init_scale))
        if self._timing == "emb":
            self._position_embedding = variable_scope.get_variable(
                name=(self._name or "embedding_table") + "_posi",
                shape=[self._maximum_position, self._dimension],
                initializer=init_ops.random_uniform_initializer(
                    -self._init_scale, self._init_scale))
开发者ID:KIngpon,项目名称:NJUNMT-tf,代码行数:17,代码来源:embedding.py

示例15: _createStackBidirectionalDynamicRNN

  def _createStackBidirectionalDynamicRNN(self,
                                          use_gpu,
                                          use_shape,
                                          use_state_tuple,
                                          initial_states_fw=None,
                                          initial_states_bw=None,
                                          scope=None):
    self.layers = [2, 3]
    input_size = 5
    batch_size = 2
    max_length = 8

    initializer = init_ops.random_uniform_initializer(
        -0.01, 0.01, seed=self._seed)
    sequence_length = array_ops.placeholder(dtypes.int64)

    self.cells_fw = [
        core_rnn_cell_impl.LSTMCell(
            num_units,
            input_size,
            initializer=initializer,
            state_is_tuple=False) for num_units in self.layers
    ]
    self.cells_bw = [
        core_rnn_cell_impl.LSTMCell(
            num_units,
            input_size,
            initializer=initializer,
            state_is_tuple=False) for num_units in self.layers
    ]

    inputs = max_length * [
        array_ops.placeholder(
            dtypes.float32,
            shape=(batch_size, input_size) if use_shape else (None, input_size))
    ]
    inputs_c = array_ops.stack(inputs)
    inputs_c = array_ops.transpose(inputs_c, [1, 0, 2])
    outputs, st_fw, st_bw = rnn.stack_bidirectional_dynamic_rnn(
        self.cells_fw,
        self.cells_bw,
        inputs_c,
        initial_states_fw=initial_states_fw,
        initial_states_bw=initial_states_bw,
        dtype=dtypes.float32,
        sequence_length=sequence_length,
        scope=scope)

    # Outputs has shape (batch_size, max_length, 2* layer[-1].
    output_shape = [None, max_length, 2 * self.layers[-1]]
    if use_shape:
      output_shape[0] = batch_size

    self.assertAllEqual(outputs.get_shape().as_list(), output_shape)

    input_value = np.random.randn(batch_size, input_size)

    return input_value, inputs, outputs, st_fw, st_bw, sequence_length
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:58,代码来源:rnn_test.py


注:本文中的tensorflow.python.ops.init_ops.random_uniform_initializer函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。