当前位置: 首页>>代码示例>>Python>>正文


Python init_ops.ones_initializer函数代码示例

本文整理汇总了Python中tensorflow.python.ops.init_ops.ones_initializer函数的典型用法代码示例。如果您正苦于以下问题:Python ones_initializer函数的具体用法?Python ones_initializer怎么用?Python ones_initializer使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了ones_initializer函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

 def __init__(self,
              axis=-1,
              momentum=0.99,
              epsilon=1e-3,
              center=True,
              scale=True,
              beta_initializer=init_ops.zeros_initializer(),
              gamma_initializer=init_ops.ones_initializer(),
              moving_mean_initializer=init_ops.zeros_initializer(),
              moving_variance_initializer=init_ops.ones_initializer(),
              beta_regularizer=None,
              gamma_regularizer=None,
              trainable=True,
              name=None,
              **kwargs):
   super(BatchNormalization, self).__init__(
       name=name, trainable=trainable, **kwargs)
   self.axis = axis
   self.momentum = momentum
   self.epsilon = epsilon
   self.center = center
   self.scale = scale
   self.beta_initializer = beta_initializer
   self.gamma_initializer = gamma_initializer
   self.moving_mean_initializer = moving_mean_initializer
   self.moving_variance_initializer = moving_variance_initializer
   self.beta_regularizer = beta_regularizer
   self.gamma_regularizer = gamma_regularizer
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:28,代码来源:normalization.py

示例2: __init__

  def __init__(self,
               axis=-1,
               momentum=0.99,
               epsilon=1e-3,
               center=True,
               scale=True,
               beta_initializer=init_ops.zeros_initializer(),
               gamma_initializer=init_ops.ones_initializer(),
               moving_mean_initializer=init_ops.zeros_initializer(),
               moving_variance_initializer=init_ops.ones_initializer(),
               beta_regularizer=None,
               gamma_regularizer=None,
               beta_constraint=None,
               gamma_constraint=None,
               renorm=False,
               renorm_clipping=None,
               renorm_momentum=0.99,
               fused=None,
               trainable=True,
               virtual_batch_size=None,
               adjustment=None,
               name=None,
               **kwargs):
    super(BatchNormalization, self).__init__(
        name=name, trainable=trainable, **kwargs)
    if isinstance(axis, list):
      self.axis = axis[:]
    else:
      self.axis = axis
    self.momentum = momentum
    self.epsilon = epsilon
    self.center = center
    self.scale = scale
    self.beta_initializer = beta_initializer
    self.gamma_initializer = gamma_initializer
    self.moving_mean_initializer = moving_mean_initializer
    self.moving_variance_initializer = moving_variance_initializer
    self.beta_regularizer = beta_regularizer
    self.gamma_regularizer = gamma_regularizer
    self.beta_constraint = beta_constraint
    self.gamma_constraint = gamma_constraint
    self.renorm = renorm
    self.virtual_batch_size = virtual_batch_size
    self.adjustment = adjustment
    if fused is None:
      fused = True

    self.fused = fused
    self._bessels_correction_test_only = True

    if renorm:
      renorm_clipping = renorm_clipping or {}
      keys = ['rmax', 'rmin', 'dmax']
      if set(renorm_clipping) - set(keys):
        raise ValueError('renorm_clipping %s contains keys not in %s' %
                         (renorm_clipping, keys))
      self.renorm_clipping = renorm_clipping
      self.renorm_momentum = renorm_momentum
开发者ID:dansbecker,项目名称:tensorflow,代码行数:58,代码来源:normalization.py

示例3: __init__

  def __init__(self,
               axis=-1,
               momentum=0.99,
               epsilon=1e-3,
               center=True,
               scale=True,
               beta_initializer=init_ops.zeros_initializer(),
               gamma_initializer=init_ops.ones_initializer(),
               moving_mean_initializer=init_ops.zeros_initializer(),
               moving_variance_initializer=init_ops.ones_initializer(),
               beta_regularizer=None,
               gamma_regularizer=None,
               beta_constraint=None,
               gamma_constraint=None,
               renorm=False,
               renorm_clipping=None,
               renorm_momentum=0.99,
               fused=None,
               trainable=True,
               name=None,
               **kwargs):
    super(BatchNormalization, self).__init__(
        name=name, trainable=trainable, **kwargs)
    self.axis = axis
    self.momentum = momentum
    self.epsilon = epsilon
    self.center = center
    self.scale = scale
    self.beta_initializer = beta_initializer
    self.gamma_initializer = gamma_initializer
    self.moving_mean_initializer = moving_mean_initializer
    self.moving_variance_initializer = moving_variance_initializer
    self.beta_regularizer = beta_regularizer
    self.gamma_regularizer = gamma_regularizer
    self.beta_constraint = beta_constraint
    self.gamma_constraint = gamma_constraint
    self.renorm = renorm
    # This environment variable is only used during the testing period of fused
    # batch norm and will be removed after that.
    if fused is None:
      fused = _FUSED_DEFAULT

    self.fused = fused
    self._bessels_correction_test_only = True
    if renorm:
      renorm_clipping = renorm_clipping or {}
      keys = ['rmax', 'rmin', 'dmax']
      if set(renorm_clipping) - set(keys):
        raise ValueError('renorm_clipping %s contains keys not in %s' %
                         (renorm_clipping, keys))
      self.renorm_clipping = renorm_clipping
      self.renorm_momentum = renorm_momentum
开发者ID:piyushjaiswal98,项目名称:tensorflow,代码行数:52,代码来源:normalization.py

示例4: __init__

 def __init__(self,
              axis=-1,
              momentum=0.99,
              epsilon=1e-3,
              center=True,
              scale=True,
              beta_initializer=init_ops.zeros_initializer(),
              gamma_initializer=init_ops.ones_initializer(),
              moving_mean_initializer=init_ops.zeros_initializer(),
              moving_variance_initializer=init_ops.ones_initializer(),
              beta_regularizer=None,
              gamma_regularizer=None,
              renorm=False,
              renorm_clipping=None,
              renorm_momentum=0.99,
              fused=False,
              trainable=True,
              name=None,
              **kwargs):
   super(BatchNormalization, self).__init__(
       name=name, trainable=trainable, **kwargs)
   self.axis = axis
   self.momentum = momentum
   self.epsilon = epsilon
   self.center = center
   self.scale = scale
   self.beta_initializer = beta_initializer
   self.gamma_initializer = gamma_initializer
   self.moving_mean_initializer = moving_mean_initializer
   self.moving_variance_initializer = moving_variance_initializer
   self.beta_regularizer = beta_regularizer
   self.gamma_regularizer = gamma_regularizer
   self.renorm = renorm
   self.fused = fused
   if self.fused and renorm:
     raise ValueError(
         'Batch renorm is currently not supported with fused batch norm.')
   if self.fused and (beta_regularizer is not None or
                      gamma_regularizer is not None):
     raise ValueError('Regularizers are not currently '
                      'supported for fused batch norm.')
   if renorm:
     renorm_clipping = renorm_clipping or {}
     keys = ['rmax', 'rmin', 'dmax']
     if set(renorm_clipping) - set(keys):
       raise ValueError('renorm_clipping %s contains keys not in %s' %
                        (renorm_clipping, keys))
     self.renorm_clipping = renorm_clipping
     self.renorm_momentum = renorm_momentum
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:49,代码来源:normalization.py

示例5: testVariableCreationInALoop

  def testVariableCreationInALoop(self):
    """Tests the variable created inside a loop can be used outside the loop."""
    with self.test_session():
      with variable_scope.variable_scope("ascope") as scope:
        def Body(i, _):
          var_x = variable_scope.get_variable(
              "x",
              shape=[2],
              initializer=init_ops.ones_initializer(),
              partitioner=partitioned_variables.variable_axis_size_partitioner(
                  4))
          return (i + 1, var_x.as_tensor())

        cond = lambda i, _: i < 2
        _, x = control_flow_ops.while_loop(
            cond, Body, (0, constant_op.constant([7, 8], dtypes.float32)))
        variables.global_variables_initializer().run()
        self.assertAllClose([1.0, 1.0], x.eval())

        scope.reuse_variables()
        var_x = variable_scope.get_variable(
            "x",
            shape=[2],
            initializer=init_ops.ones_initializer(),
            partitioner=partitioned_variables.variable_axis_size_partitioner(4))

        self.assertAllClose([1.0, 1.0], var_x.as_tensor().eval())
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:27,代码来源:partitioned_variables_test.py

示例6: Foo

 def Foo(inputs):
   var = variable_scope.get_variable(
       "var",
       shape=[10],
       dtype=dtypes.float32,
       initializer=init_ops.ones_initializer())
   return inputs + var
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:7,代码来源:function_test.py

示例7: testControlDepsNone

  def testControlDepsNone(self):
    with self.test_session() as session:
      c = constant_op.constant(1.0)
      with ops.control_dependencies([c]):
        # d get the control dependency.
        d = constant_op.constant(2.0)
        # Partitioned variables do not.
        var_x = variable_scope.get_variable(
            "x",
            shape=[2],
            initializer=init_ops.ones_initializer(),
            partitioner=partitioned_variables.variable_axis_size_partitioner(4))

        ops_before_read = session.graph.get_operations()
        var_x.as_tensor()  # Caches the ops for subsequent reads.
        reading_ops = [
            op for op in session.graph.get_operations()
            if op not in ops_before_read
        ]

      self.assertEqual([c.op], d.op.control_inputs)
      # Tests that no control dependencies are added to reading a partitioned
      # variable which is similar to reading a variable.
      for op in reading_ops:
        self.assertEqual([], op.control_inputs)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:25,代码来源:partitioned_variables_test.py

示例8: testEagerExecution

 def testEagerExecution(self):
   with context.eager_mode():
     container = variable_scope.EagerVariableStore()
     x = constant_op.constant([[2.0]])
     with container.as_default():
       y = core_layers.dense(
           x, 1, name='my_dense',
           kernel_initializer=init_ops.ones_initializer())
     self.assertAllEqual(y, [[2.0]])
     self.assertEqual(len(container.variables()), 2)
     # Recreate the layer to test reuse.
     with container.as_default():
       core_layers.dense(
           x, 1, name='my_dense',
           kernel_initializer=init_ops.ones_initializer())
     self.assertEqual(len(container.variables()), 2)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:16,代码来源:core_test.py

示例9: testOnesInitializer

 def testOnesInitializer(self):
   with self.test_session(use_gpu=True):
     shape = [2, 3]
     x = variable_scope.get_variable(
         "x", shape=shape, initializer=init_ops.ones_initializer())
     x.initializer.run()
     self.assertAllEqual(x.eval(), np.ones(shape))
开发者ID:HughKu,项目名称:tensorflow,代码行数:7,代码来源:init_ops_test.py

示例10: build

  def build(self, inputs_shape):
    # Call the build method of the parent class.
    super(MaskedBasicLSTMCell, self).build(inputs_shape)

    self.built = False

    input_depth = inputs_shape[1].value
    h_depth = self._num_units
    self._mask = self.add_variable(
        name="mask",
        shape=[input_depth + h_depth, 4 * h_depth],
        initializer=init_ops.ones_initializer(),
        trainable=False,
        dtype=self.dtype)
    self._threshold = self.add_variable(
        name="threshold",
        shape=[],
        initializer=init_ops.zeros_initializer(),
        trainable=False,
        dtype=self.dtype)
    # Add masked_weights in the weights namescope so as to make it easier
    # for the quantization library to add quant ops.
    self._masked_kernel = math_ops.multiply(self._mask, self._kernel,
                                            core_layers.MASKED_WEIGHT_NAME)
    if self._mask not in ops.get_collection_ref(core_layers.MASK_COLLECTION):
      ops.add_to_collection(core_layers.MASK_COLLECTION, self._mask)
      ops.add_to_collection(core_layers.MASKED_WEIGHT_COLLECTION,
                            self._masked_kernel)
      ops.add_to_collection(core_layers.THRESHOLD_COLLECTION, self._threshold)
      ops.add_to_collection(core_layers.WEIGHT_COLLECTION, self._kernel)

    self.built = True
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:32,代码来源:rnn_cells.py

示例11: Body

 def Body(i, _):
   var_x = variable_scope.get_variable(
       "x",
       shape=[2],
       initializer=init_ops.ones_initializer(),
       partitioner=partitioned_variables.variable_axis_size_partitioner(
           4))
   return (i + 1, var_x.as_tensor())
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:8,代码来源:partitioned_variables_test.py

示例12: __init__

 def __init__(self,
              axis=-1,
              momentum=0.99,
              epsilon=1e-3,
              center=True,
              scale=True,
              beta_initializer=init_ops.zeros_initializer(),
              gamma_initializer=init_ops.ones_initializer(),
              moving_mean_initializer=init_ops.zeros_initializer(),
              moving_variance_initializer=init_ops.ones_initializer(),
              beta_regularizer=None,
              gamma_regularizer=None,
              beta_constraint=None,
              gamma_constraint=None,
              renorm=False,
              renorm_clipping=None,
              renorm_momentum=0.99,
              fused=None,
              trainable=True,
              virtual_batch_size=None,
              adjustment=None,
              name=None,
              **kwargs):
   super(BatchNormalization, self).__init__(
       axis=axis,
       momentum=momentum,
       epsilon=epsilon,
       center=center,
       scale=scale,
       beta_initializer=beta_initializer,
       gamma_initializer=gamma_initializer,
       moving_mean_initializer=moving_mean_initializer,
       moving_variance_initializer=moving_variance_initializer,
       beta_regularizer=beta_regularizer,
       gamma_regularizer=gamma_regularizer,
       beta_constraint=beta_constraint,
       gamma_constraint=gamma_constraint,
       renorm=renorm,
       renorm_clipping=renorm_clipping,
       renorm_momentum=renorm_momentum,
       fused=fused,
       trainable=trainable,
       virtual_batch_size=virtual_batch_size,
       adjustment=adjustment,
       name=name,
       **kwargs)
开发者ID:aritratony,项目名称:tensorflow,代码行数:46,代码来源:normalization.py

示例13: testAddVariable

  def testAddVariable(self):
    obj = NonLayerCheckpointable()
    with self.assertRaisesRegexp(ValueError, "do not specify shape"):
      checkpointable_utils.add_variable(
          obj, name="shape_specified_twice", shape=[], initializer=1)
    constant_initializer = checkpointable_utils.add_variable(
        obj, name="constant_initializer", initializer=1)
    with variable_scope.variable_scope("some_variable_scope"):
      ones_initializer = checkpointable_utils.add_variable(
          obj,
          name="ones_initializer",
          shape=[2],
          initializer=init_ops.ones_initializer(dtype=dtypes.float32))
    bare_initializer = checkpointable_utils.add_variable(
        obj,
        name="bare_initializer",
        shape=[2, 2],
        dtype=dtypes.float64,
        initializer=init_ops.zeros_initializer)

    # Even in graph mode, there are no naming conflicts between objects, only
    # naming conflicts within an object.
    other_duplicate = resource_variable_ops.ResourceVariable(
        name="duplicate", initial_value=1.)
    duplicate = checkpointable_utils.add_variable(
        obj, name="duplicate", shape=[])
    with self.assertRaisesRegexp(ValueError, "'duplicate' already exists"):
      checkpointable_utils.add_variable(obj, name="duplicate", shape=[])

    if context.in_graph_mode():
      self.evaluate(variables.global_variables_initializer())
    self.assertEqual("constant_initializer:0", constant_initializer.name)
    self.assertEqual(1, self.evaluate(constant_initializer))
    self.assertEqual("some_variable_scope/ones_initializer:0",
                     ones_initializer.name)
    self.assertAllEqual([1, 1], self.evaluate(ones_initializer))
    self.assertAllEqual([[0., 0.],
                         [0., 0.]], self.evaluate(bare_initializer))
    self.assertEqual("a_variable:0", obj.a_variable.name)
    self.assertEqual("duplicate:0", other_duplicate.name)
    if context.in_graph_mode():
      # The .name attribute may be globally influenced, but the checkpoint name
      # won't be (tested below).
      self.assertEqual("duplicate_1:0", duplicate.name)
    else:
      # When executing eagerly, there's no uniquification of variable names. The
      # checkpoint name will be the same.
      self.assertEqual("duplicate:0", duplicate.name)
    named_variables, _ = checkpointable_utils._serialize_object_graph(obj)
    expected_checkpoint_names = (
        "a_variable/.ATTRIBUTES/VARIABLE_VALUE",
        "bare_initializer/.ATTRIBUTES/VARIABLE_VALUE",
        "constant_initializer/.ATTRIBUTES/VARIABLE_VALUE",
        "duplicate/.ATTRIBUTES/VARIABLE_VALUE",
        "ones_initializer/.ATTRIBUTES/VARIABLE_VALUE",
    )
    six.assertCountEqual(
        self, expected_checkpoint_names, named_variables.keys())
开发者ID:dananjayamahesh,项目名称:tensorflow,代码行数:58,代码来源:checkpointable_utils_test.py

示例14: _create_variable_statistics_object

 def _create_variable_statistics_object(self):
   """Creates non-trainable variables representing input statistics."""
   series_start_moments = Moments(
       mean=variable_scope.get_variable(
           name="series_start_mean",
           shape=[self._num_features],
           dtype=self._dtype,
           initializer=init_ops.zeros_initializer(),
           trainable=False),
       variance=variable_scope.get_variable(
           name="series_start_variance",
           shape=[self._num_features],
           dtype=self._dtype,
           initializer=init_ops.ones_initializer(),
           trainable=False))
   overall_feature_moments = Moments(
       mean=variable_scope.get_variable(
           name="overall_feature_mean",
           shape=[self._num_features],
           dtype=self._dtype,
           initializer=init_ops.zeros_initializer(),
           trainable=False),
       variance=variable_scope.get_variable(
           name="overall_feature_var",
           shape=[self._num_features],
           dtype=self._dtype,
           initializer=init_ops.ones_initializer(),
           trainable=False))
   start_time = variable_scope.get_variable(
       name="start_time",
       dtype=dtypes.int64,
       initializer=init_ops.zeros_initializer(),
       shape=[],
       trainable=False)
   total_observation_count = variable_scope.get_variable(
       name="total_observation_count",
       shape=[],
       dtype=dtypes.int64,
       initializer=init_ops.ones_initializer(),
       trainable=False)
   return InputStatistics(
       series_start_moments=series_start_moments,
       overall_feature_moments=overall_feature_moments,
       start_time=start_time,
       total_observation_count=total_observation_count)
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:45,代码来源:math_utils.py

示例15: testLSTMLayer

  def testLSTMLayer(self):
    # Run with all-0 weights, no padding.
    o = self._RunLSTMLayer('zeros', init_ops.zeros_initializer(), 0., 0., 0.)
    self.assertAllClose(o, [[[0.]] * self._batch_size] * 3)
    o = self._RunLSTMLayer('zeros', init_ops.zeros_initializer(), 0., 1., 0.)
    self.assertAllClose(o, [[[.25]] * self._batch_size,
                            [[.125]] * self._batch_size,
                            [[.0625]] * self._batch_size])
    o = self._RunLSTMLayer('zeros', init_ops.zeros_initializer(), 1., 0., 0.)
    self.assertAllClose(o, [[[0.]] * self._batch_size] * 3)
    o = self._RunLSTMLayer('zeros', init_ops.zeros_initializer(), 1., 1., 0.)
    self.assertAllClose(o, [[[.25]] * self._batch_size,
                            [[.125]] * self._batch_size,
                            [[.0625]] * self._batch_size])

    # Run with all-1 weights, no padding.
    weight1 = 1.
    for m_init in [0., 1.]:
      for c_init in [0., 1.]:
        o = self._RunLSTMLayer('ones',
                               init_ops.ones_initializer(), m_init, c_init, 0.)
        m0 = self._NextM(self._inputs, weight1, m_init, c_init)
        c0 = self._NextC(self._inputs, weight1, m_init, c_init)
        self.assertAllClose(o[0], m0)
        m1 = self._NextM(self._inputs, weight1, m0, c0)
        c1 = self._NextC(self._inputs, weight1, m0, c0)
        self.assertAllClose(o[1], m1)
        m2 = self._NextM(self._inputs, weight1, m1, c1)
        self.assertAllClose(o[2], m2)

    # Run with random weights.
    for weight in np.random.rand(3):
      weight_tf = constant_op.constant(weight, dtypes.float32)
      random_weight = lambda shape, w=weight_tf: array_ops.fill(shape, w)

      # No padding.
      for m_init in [0., 1.]:
        for c_init in [0., 1.]:
          o = self._RunLSTMLayer('random', random_weight, m_init, c_init, 0.)
          m0 = self._NextM(self._inputs, weight, m_init, c_init)
          c0 = self._NextC(self._inputs, weight, m_init, c_init)
          self.assertAllClose(o[0], m0)
          m1 = self._NextM(self._inputs, weight, m0, c0)
          c1 = self._NextC(self._inputs, weight, m0, c0)
          self.assertAllClose(o[1], m1)
          m2 = self._NextM(self._inputs, weight, m1, c1)
          self.assertAllClose(o[2], m2)

      # Set padding.
      o = self._RunLSTMLayer('random', random_weight, 0., 0., 1.)
      self.assertAllClose(o, [[[0.]] * self._batch_size] * 3)
      o = self._RunLSTMLayer('random', random_weight, 0., 1., 1.)
      self.assertAllClose(o, [[[0.]] * self._batch_size] * 3)
      o = self._RunLSTMLayer('random', random_weight, 1., 0., 1.)
      self.assertAllClose(o, [[[1.]] * self._batch_size] * 3)
      o = self._RunLSTMLayer('random', random_weight, 1., 1., 1.)
      self.assertAllClose(o, [[[1.]] * self._batch_size] * 3)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:57,代码来源:lstm_test.py


注:本文中的tensorflow.python.ops.init_ops.ones_initializer函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。