本文整理汇总了Python中tensorflow.python.ops.init_ops.convolutional_delta_orthogonal函数的典型用法代码示例。如果您正苦于以下问题:Python convolutional_delta_orthogonal函数的具体用法?Python convolutional_delta_orthogonal怎么用?Python convolutional_delta_orthogonal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了convolutional_delta_orthogonal函数的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testGain
def testGain(self):
shape = (3, 3, 10, 10)
for dtype in [dtypes.float32, dtypes.float64]:
init1 = init_ops.convolutional_delta_orthogonal(seed=1, dtype=dtype)
init2 = init_ops.convolutional_delta_orthogonal(gain=3.14,
seed=1, dtype=dtype)
with self.test_session(graph=ops.Graph(), use_gpu=True):
t1 = init1(shape).eval()
t2 = init2(shape).eval()
return np.allclose(t1, t2 / 3.14, rtol=1e-15, atol=1e-15)
示例2: testGain
def testGain(self):
shape = (3, 3, 10, 10)
for dtype in [dtypes.float32, dtypes.float64]:
init1 = init_ops.convolutional_delta_orthogonal(seed=1, dtype=dtype)
init2 = init_ops.convolutional_delta_orthogonal(gain=3.14,
seed=1, dtype=dtype)
with self.session(graph=ops.Graph(), use_gpu=True):
t1 = init1(shape).eval()
t2 = init2(shape).eval()
self.assertAllClose(t1, t2 / 3.14)
示例3: testShapesValues
def testShapesValues(self):
gain = 3.14
for dtype in [dtypes.float32]:
for kernel_size in [[3], [8], [3, 5], [2, 4], [3, 3, 3], [2, 2, 2]]:
tol = 1e-2
# Check orthogonality by computing ratio between
# the 2-norms of the inputs and outputs.
if len(kernel_size) == 1:
shape = [4, 32, 64]
convolution = convolutional.conv1d
elif len(kernel_size) == 2:
convolution = convolutional.conv2d
shape = [4, 32, 32, 64]
else:
shape = [4, 16, 16, 16, 64]
convolution = convolutional.conv3d
inputs = random_ops.random_normal(shape, dtype=dtype)
inputs_2norm = linalg_ops.norm(inputs)
outputs = convolution(
inputs, padding="same", filters=128,
kernel_size=kernel_size, use_bias=False,
kernel_initializer=init_ops.convolutional_delta_orthogonal(
gain=gain))
outputs_shape = shape[0:-1] + [128]
outputs_2norm = linalg_ops.norm(outputs)
ratio = outputs_2norm / inputs_2norm
my_ops = variables.global_variables_initializer()
with self.test_session(use_gpu=True) as sess:
sess.run(my_ops)
# Check the shape of the outputs
t = outputs.eval()
self.assertAllEqual(t.shape, outputs_shape)
# Check isometry of the delta-orthogonal kernel.
self.assertAllClose(sess.run(ratio), np.sqrt(gain),
rtol=tol, atol=tol)
示例4: testInvalidShape
def testInvalidShape(self):
init1 = init_ops.convolutional_delta_orthogonal()
with self.test_session(graph=ops.Graph(), use_gpu=True):
self.assertRaises(ValueError, init1, shape=[3, 3, 6, 5])
示例5: testDuplicatedInitializer
def testDuplicatedInitializer(self):
init = init_ops.convolutional_delta_orthogonal()
self.assertFalse(duplicated_initializer(self, init, 1, (3, 3, 10, 10)))
示例6: testInitializerDifferent
def testInitializerDifferent(self):
for dtype in [dtypes.float32, dtypes.float64]:
init1 = init_ops.convolutional_delta_orthogonal(seed=1, dtype=dtype)
init2 = init_ops.convolutional_delta_orthogonal(seed=2, dtype=dtype)
self.assertFalse(identicaltest(self, init1, init2, (3, 3, 10, 10)))