当前位置: 首页>>代码示例>>Python>>正文


Python image_ops.resize_images函数代码示例

本文整理汇总了Python中tensorflow.python.ops.image_ops.resize_images函数的典型用法代码示例。如果您正苦于以下问题:Python resize_images函数的具体用法?Python resize_images怎么用?Python resize_images使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了resize_images函数的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testNoOp

  def testNoOp(self):
    img_shape = [1, 6, 4, 1]
    single_shape = [6, 4, 1]
    # This test is also conducted with int8, so 127 is the maximum
    # value that can be used.
    data = [127, 127, 64, 64,
            127, 127, 64, 64,
            64, 64, 127, 127,
            64, 64, 127, 127,
            50, 50, 100, 100,
            50, 50, 100, 100]
    target_height = 6
    target_width = 4

    for nptype in self.TYPES:
      img_np = np.array(data, dtype=nptype).reshape(img_shape)

      for opt in self.OPTIONS:
        with self.test_session() as sess:
          image = constant_op.constant(img_np, shape=img_shape)
          y = image_ops.resize_images(image, target_height, target_width, opt)
          yshape = array_ops.shape(y)
          resized, newshape = sess.run([y, yshape])
          self.assertAllEqual(img_shape, newshape)
          self.assertAllClose(resized, img_np, atol=1e-5)

      # Resizing with a single image must leave the shape unchanged also.
      with self.test_session():
        img_single = img_np.reshape(single_shape)
        image = constant_op.constant(img_single, shape=single_shape)
        y = image_ops.resize_images(image, target_height, target_width,
                                    self.OPTIONS[0])
        yshape = array_ops.shape(y)
        newshape = yshape.eval()
        self.assertAllEqual(single_shape, newshape)
开发者ID:kevings14,项目名称:tensorflow,代码行数:35,代码来源:image_ops_test.py

示例2: testNoOp

  def testNoOp(self):
    img_shape = [1, 6, 4, 1]
    single_shape = [6, 4, 1]
    data = [128, 128, 64, 64,
            128, 128, 64, 64,
            64, 64, 128, 128,
            64, 64, 128, 128,
            50, 50, 100, 100,
            50, 50, 100, 100]
    img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

    target_height = 6
    target_width = 4

    for opt in self.OPTIONS:
      with self.test_session() as sess:
        image = constant_op.constant(img_np, shape=img_shape)
        y = image_ops.resize_images(image, target_height, target_width, opt)
        yshape = array_ops.shape(y)
        resized, newshape = sess.run([y, yshape])
        self.assertAllEqual(img_shape, newshape)
        self.assertAllClose(resized, img_np, atol=1e-5)

    # Resizing with a single image must leave the shape unchanged also.
    with self.test_session():
      img_single = img_np.reshape(single_shape)
      image = constant_op.constant(img_single, shape=single_shape)
      y = image_ops.resize_images(image, target_height, target_width,
                                  self.OPTIONS[0])
      yshape = array_ops.shape(y)
      newshape = yshape.eval()
      self.assertAllEqual(single_shape, newshape)
开发者ID:iSWORD,项目名称:tensorflow,代码行数:32,代码来源:image_ops_test.py

示例3: _make_sprite_image

def _make_sprite_image(thumbnails, thumbnail_dim):
  """Constructs a sprite image from thumbnails and returns the png bytes."""
  if len(thumbnails) < 1:
    raise ValueError('The length of "thumbnails" must be >= 1')

  if isinstance(thumbnails, np.ndarray) and thumbnails.ndim != 4:
    raise ValueError('"thumbnails" should be of rank 4, '
                     'but is of rank %d' % thumbnails.ndim)
  if isinstance(thumbnails, list):
    if not isinstance(thumbnails[0], np.ndarray) or thumbnails[0].ndim != 3:
      raise ValueError('Each element of "thumbnails" must be a 3D `ndarray`')
    thumbnails = np.array(thumbnails)

  with ops.Graph().as_default():
    s = session.Session()
    resized_images = image_ops.resize_images(thumbnails, thumbnail_dim).eval(
        session=s)
    images_per_row = int(math.ceil(math.sqrt(len(thumbnails))))
    thumb_height = thumbnail_dim[0]
    thumb_width = thumbnail_dim[1]
    master_height = images_per_row * thumb_height
    master_width = images_per_row * thumb_width
    num_channels = thumbnails.shape[3]
    master = np.zeros([master_height, master_width, num_channels])
    for idx, image in enumerate(resized_images):
      left_idx = idx % images_per_row
      top_idx = int(math.floor(idx / images_per_row))
      left_start = left_idx * thumb_width
      left_end = left_start + thumb_width
      top_start = top_idx * thumb_height
      top_end = top_start + thumb_height
      master[top_start:top_end, left_start:left_end, :] = image

    return image_ops.encode_png(master).eval(session=s)
开发者ID:chenjun0210,项目名称:tensorflow,代码行数:34,代码来源:projector_plugin.py

示例4: testResizeDownArea

  def testResizeDownArea(self):
    img_shape = [1, 6, 6, 1]
    data = [128, 64, 32, 16, 8, 4,
            4, 8, 16, 32, 64, 128,
            128, 64, 32, 16, 8, 4,
            5, 10, 15, 20, 25, 30,
            30, 25, 20, 15, 10, 5,
            5, 10, 15, 20, 25, 30]
    img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

    target_height = 4
    target_width = 4
    expected_data = [73, 33, 23, 39,
                     73, 33, 23, 39,
                     14, 16, 19, 21,
                     14, 16, 19, 21]

    with self.test_session():
      image = constant_op.constant(img_np, shape=img_shape)
      y = image_ops.resize_images(image, target_height, target_width,
                                  image_ops.ResizeMethod.AREA)
      expected = np.array(expected_data).reshape(
          [1, target_height, target_width, 1])
      resized = y.eval()
      self.assertAllClose(resized, expected, atol=1)
开发者ID:hbali-sara,项目名称:tensorflow,代码行数:25,代码来源:image_ops_test.py

示例5: testResizeUpBicubic

  def testResizeUpBicubic(self):
    img_shape = [1, 6, 6, 1]
    data = [128, 128, 64, 64, 128, 128, 64, 64,
            64, 64, 128, 128, 64, 64, 128, 128,
            50, 50, 100, 100, 50, 50, 100, 100,
            50, 50, 100, 100, 50, 50, 100, 100,
            50, 50, 100, 100]
    img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

    target_height = 8
    target_width = 8
    expected_data = [128, 135, 96, 55, 64, 114, 134, 128,
                     78, 81, 68, 52, 57, 118, 144, 136,
                     55, 49, 79, 109, 103, 89, 83, 84,
                     74, 70, 95, 122, 115, 69, 49, 55,
                     100, 105, 75, 43, 50, 89, 105, 100,
                     57, 54, 74, 96, 91, 65, 55, 58,
                     70, 69, 75, 81, 80, 72, 69, 70,
                     105, 112, 75, 36, 45, 92, 111, 105]

    with self.test_session():
      image = constant_op.constant(img_np, shape=img_shape)
      y = image_ops.resize_images(image, target_height, target_width,
                                  image_ops.ResizeMethod.BICUBIC)
      resized = y.eval()
      expected = np.array(expected_data).reshape(
          [1, target_height, target_width, 1])
      self.assertAllClose(resized, expected, atol=1)
开发者ID:hbali-sara,项目名称:tensorflow,代码行数:28,代码来源:image_ops_test.py

示例6: testResizeDown

  def testResizeDown(self):

    data = [128, 128, 64, 64,
            128, 128, 64, 64,
            64, 64, 128, 128,
            64, 64, 128, 128,
            50, 50, 100, 100,
            50, 50, 100, 100]
    expected_data = [128, 64,
                     64, 128,
                     50, 100]
    target_height = 3
    target_width = 2

    # Test out 3-D and 4-D image shapes.
    img_shapes = [[1, 6, 4, 1], [6, 4, 1]]
    target_shapes = [[1, target_height, target_width, 1],
                     [target_height, target_width, 1]]

    for target_shape, img_shape in zip(target_shapes, img_shapes):
      img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

      for opt in self.OPTIONS:
        with self.test_session():
          image = constant_op.constant(img_np, shape=img_shape)
          y = image_ops.resize_images(image, target_height, target_width, opt)
          expected = np.array(expected_data).reshape(target_shape)
          resized = y.eval()
          self.assertAllClose(resized, expected, atol=1e-5)
开发者ID:hbali-sara,项目名称:tensorflow,代码行数:29,代码来源:image_ops_test.py

示例7: testResizeDown

  def testResizeDown(self):
    # This test is also conducted with int8, so 127 is the maximum
    # value that can be used.
    data = [127, 127, 64, 64,
            127, 127, 64, 64,
            64, 64, 127, 127,
            64, 64, 127, 127,
            50, 50, 100, 100,
            50, 50, 100, 100]
    expected_data = [127, 64,
                     64, 127,
                     50, 100]
    target_height = 3
    target_width = 2

    # Test out 3-D and 4-D image shapes.
    img_shapes = [[1, 6, 4, 1], [6, 4, 1]]
    target_shapes = [[1, target_height, target_width, 1],
                     [target_height, target_width, 1]]

    for target_shape, img_shape in zip(target_shapes, img_shapes):

      for nptype in self.TYPES:
        img_np = np.array(data, dtype=nptype).reshape(img_shape)

        for opt in self.OPTIONS:
          with self.test_session():
            image = constant_op.constant(img_np, shape=img_shape)
            y = image_ops.resize_images(image, target_height, target_width, opt)
            expected = np.array(expected_data).reshape(target_shape)
            resized = y.eval()
            self.assertAllClose(resized, expected, atol=1e-5)
开发者ID:kevings14,项目名称:tensorflow,代码行数:32,代码来源:image_ops_test.py

示例8: testCompareNearestNeighbor

 def testCompareNearestNeighbor(self):
   input_shape = [1, 5, 5, 3]
   target_height = target_width = 10
   for nptype in [np.float]:
     for align_corners in [True, False]:
       img_np = np.arange(0, np.prod(input_shape), dtype=nptype).reshape(input_shape)
       with self.test_session(use_gpu=True):
         image = constant_op.constant(img_np, shape=input_shape)
         out_op = image_ops.resize_images(image, target_height, target_width,
                                          image_ops.ResizeMethod.NEAREST_NEIGHBOR,
                                          align_corners=align_corners)
         gpu_val = out_op.eval()
       with self.test_session(use_gpu=False):
         image = constant_op.constant(img_np, shape=input_shape)
         out_op = image_ops.resize_images(image, target_height, target_width,
                                          image_ops.ResizeMethod.NEAREST_NEIGHBOR,
                                          align_corners=align_corners)
         cpu_val = out_op.eval()
       self.assertAllClose(cpu_val, gpu_val, rtol=1e-5, atol=1e-5)
开发者ID:4Quant,项目名称:tensorflow,代码行数:19,代码来源:image_ops_test.py

示例9: testResizeUp

  def testResizeUp(self):
    img_shape = [1, 3, 2, 1]
    data = [64, 32,
            32, 64,
            50, 100]
    target_height = 6
    target_width = 4
    expected_data = {}
    expected_data[image_ops.ResizeMethod.BILINEAR] = [
        64.0, 48.0, 32.0, 32.0,
        48.0, 48.0, 48.0, 48.0,
        32.0, 48.0, 64.0, 64.0,
        41.0, 61.5, 82.0, 82.0,
        50.0, 75.0, 100.0, 100.0,
        50.0, 75.0, 100.0, 100.0]
    expected_data[image_ops.ResizeMethod.NEAREST_NEIGHBOR] = [
        64.0, 64.0, 32.0, 32.0,
        64.0, 64.0, 32.0, 32.0,
        32.0, 32.0, 64.0, 64.0,
        32.0, 32.0, 64.0, 64.0,
        50.0, 50.0, 100.0, 100.0,
        50.0, 50.0, 100.0, 100.0]
    expected_data[image_ops.ResizeMethod.AREA] = [
        64.0, 64.0, 32.0, 32.0,
        64.0, 64.0, 32.0, 32.0,
        32.0, 32.0, 64.0, 64.0,
        32.0, 32.0, 64.0, 64.0,
        50.0, 50.0, 100.0, 100.0,
        50.0, 50.0, 100.0, 100.0]

    for nptype in self.TYPES:
      for opt in [
          image_ops.ResizeMethod.BILINEAR,
          image_ops.ResizeMethod.NEAREST_NEIGHBOR,
          image_ops.ResizeMethod.AREA]:
        for use_gpu in self.availableGPUModes(opt, nptype):
          with self.test_session(use_gpu=use_gpu):
            img_np = np.array(data, dtype=nptype).reshape(img_shape)
            image = constant_op.constant(img_np, shape=img_shape)
            y = image_ops.resize_images(image, target_height, target_width, opt)
            resized = y.eval()
            expected = np.array(expected_data[opt]).reshape(
                [1, target_height, target_width, 1])
            self.assertAllClose(resized, expected, atol=1e-05)
开发者ID:0-T-0,项目名称:tensorflow,代码行数:44,代码来源:image_ops_test.py

示例10: testTensorArguments

  def testTensorArguments(self):
    img_shape = [1, 6, 4, 1]
    single_shape = [6, 4, 1]
    # This test is also conducted with int8, so 127 is the maximum
    # value that can be used.
    data = [127, 127, 64, 64,
            127, 127, 64, 64,
            64, 64, 127, 127,
            64, 64, 127, 127,
            50, 50, 100, 100,
            50, 50, 100, 100]
    target_height = array_ops.placeholder(dtypes.int32)
    target_width = array_ops.placeholder(dtypes.int32)

    img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

    for opt in self.OPTIONS:
      with self.test_session() as sess:
        image = constant_op.constant(img_np, shape=img_shape)
        y = image_ops.resize_images(image, target_height, target_width, opt)
        yshape = array_ops.shape(y)
        resized, newshape = sess.run([y, yshape], {target_height: 6,
                                                   target_width: 4})
        self.assertAllEqual(img_shape, newshape)
        self.assertAllClose(resized, img_np, atol=1e-5)

    # Resizing with a single image must leave the shape unchanged also.
    with self.test_session():
      img_single = img_np.reshape(single_shape)
      image = constant_op.constant(img_single, shape=single_shape)
      y = image_ops.resize_images(image, target_height, target_width,
                                  self.OPTIONS[0])
      yshape = array_ops.shape(y)
      newshape = yshape.eval(feed_dict={target_height: 6, target_width: 4})
      self.assertAllEqual(single_shape, newshape)

    # Incorrect shape.
    with self.assertRaises(ValueError):
      _ = image_ops.resize_images(
          image, [12, 32], 4, image_ops.ResizeMethod.BILINEAR)
    with self.assertRaises(ValueError):
      _ = image_ops.resize_images(
          image, 6, [12, 32], image_ops.ResizeMethod.BILINEAR)

    # Incorrect dtypes.
    with self.assertRaises(ValueError):
      _ = image_ops.resize_images(
          image, 6.0, 4, image_ops.ResizeMethod.BILINEAR)
    with self.assertRaises(ValueError):
      _ = image_ops.resize_images(
          image, 6, 4.0, image_ops.ResizeMethod.BILINEAR)
开发者ID:kevings14,项目名称:tensorflow,代码行数:51,代码来源:image_ops_test.py

示例11: testResizeUp

  def testResizeUp(self):
    img_shape = [1, 3, 2, 1]
    data = [128, 64,
            64, 128,
            50, 100]
    img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

    target_height = 6
    target_width = 4
    expected_data = {}
    expected_data[image_ops.ResizeMethod.BILINEAR] = [
        128.0, 96.0, 64.0, 64.0,
        96.0, 96.0, 96.0, 96.0,
        64.0, 96.0, 128.0, 128.0,
        57.0, 85.5, 114.0, 114.0,
        50.0, 75.0, 100.0, 100.0,
        50.0, 75.0, 100.0, 100.0]
    expected_data[image_ops.ResizeMethod.NEAREST_NEIGHBOR] = [
        128.0, 128.0, 64.0, 64.0,
        128.0, 128.0, 64.0, 64.0,
        64.0, 64.0, 128.0, 128.0,
        64.0, 64.0, 128.0, 128.0,
        50.0, 50.0, 100.0, 100.0,
        50.0, 50.0, 100.0, 100.0]
    expected_data[image_ops.ResizeMethod.AREA] = [
        128.0, 128.0, 64.0, 64.0,
        128.0, 128.0, 64.0, 64.0,
        64.0, 64.0, 128.0, 128.0,
        64.0, 64.0, 128.0, 128.0,
        50.0, 50.0, 100.0, 100.0,
        50.0, 50.0, 100.0, 100.0]

    for opt in [
        image_ops.ResizeMethod.BILINEAR,
        image_ops.ResizeMethod.NEAREST_NEIGHBOR,
        image_ops.ResizeMethod.AREA]:
      with self.test_session():
        image = constant_op.constant(img_np, shape=img_shape)
        y = image_ops.resize_images(image, target_height, target_width, opt)
        resized = y.eval()
        expected = np.array(expected_data[opt]).reshape(
            [1, target_height, target_width, 1])
        self.assertAllClose(resized, expected, atol=1e-05)
开发者ID:hbali-sara,项目名称:tensorflow,代码行数:43,代码来源:image_ops_test.py

示例12: testNoOp

  def testNoOp(self):
    img_shape = [1, 6, 4, 1]
    data = [128, 128, 64, 64,
            128, 128, 64, 64,
            64, 64, 128, 128,
            64, 64, 128, 128,
            50, 50, 100, 100,
            50, 50, 100, 100]
    img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

    target_height = 6
    target_width = 4

    for opt in self.OPTIONS:
      with self.test_session():
        image = constant_op.constant(img_np, shape=img_shape)
        y = image_ops.resize_images(image, target_height, target_width, opt)
        resized = y.eval()
        self.assertAllClose(resized, img_np, atol=1e-5)
开发者ID:hbali-sara,项目名称:tensorflow,代码行数:19,代码来源:image_ops_test.py


注:本文中的tensorflow.python.ops.image_ops.resize_images函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。