本文整理汇总了Python中tensorflow.python.ops.image_ops.resize_images函数的典型用法代码示例。如果您正苦于以下问题:Python resize_images函数的具体用法?Python resize_images怎么用?Python resize_images使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了resize_images函数的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testNoOp
def testNoOp(self):
img_shape = [1, 6, 4, 1]
single_shape = [6, 4, 1]
# This test is also conducted with int8, so 127 is the maximum
# value that can be used.
data = [127, 127, 64, 64,
127, 127, 64, 64,
64, 64, 127, 127,
64, 64, 127, 127,
50, 50, 100, 100,
50, 50, 100, 100]
target_height = 6
target_width = 4
for nptype in self.TYPES:
img_np = np.array(data, dtype=nptype).reshape(img_shape)
for opt in self.OPTIONS:
with self.test_session() as sess:
image = constant_op.constant(img_np, shape=img_shape)
y = image_ops.resize_images(image, target_height, target_width, opt)
yshape = array_ops.shape(y)
resized, newshape = sess.run([y, yshape])
self.assertAllEqual(img_shape, newshape)
self.assertAllClose(resized, img_np, atol=1e-5)
# Resizing with a single image must leave the shape unchanged also.
with self.test_session():
img_single = img_np.reshape(single_shape)
image = constant_op.constant(img_single, shape=single_shape)
y = image_ops.resize_images(image, target_height, target_width,
self.OPTIONS[0])
yshape = array_ops.shape(y)
newshape = yshape.eval()
self.assertAllEqual(single_shape, newshape)
示例2: testNoOp
def testNoOp(self):
img_shape = [1, 6, 4, 1]
single_shape = [6, 4, 1]
data = [128, 128, 64, 64,
128, 128, 64, 64,
64, 64, 128, 128,
64, 64, 128, 128,
50, 50, 100, 100,
50, 50, 100, 100]
img_np = np.array(data, dtype=np.uint8).reshape(img_shape)
target_height = 6
target_width = 4
for opt in self.OPTIONS:
with self.test_session() as sess:
image = constant_op.constant(img_np, shape=img_shape)
y = image_ops.resize_images(image, target_height, target_width, opt)
yshape = array_ops.shape(y)
resized, newshape = sess.run([y, yshape])
self.assertAllEqual(img_shape, newshape)
self.assertAllClose(resized, img_np, atol=1e-5)
# Resizing with a single image must leave the shape unchanged also.
with self.test_session():
img_single = img_np.reshape(single_shape)
image = constant_op.constant(img_single, shape=single_shape)
y = image_ops.resize_images(image, target_height, target_width,
self.OPTIONS[0])
yshape = array_ops.shape(y)
newshape = yshape.eval()
self.assertAllEqual(single_shape, newshape)
示例3: _make_sprite_image
def _make_sprite_image(thumbnails, thumbnail_dim):
"""Constructs a sprite image from thumbnails and returns the png bytes."""
if len(thumbnails) < 1:
raise ValueError('The length of "thumbnails" must be >= 1')
if isinstance(thumbnails, np.ndarray) and thumbnails.ndim != 4:
raise ValueError('"thumbnails" should be of rank 4, '
'but is of rank %d' % thumbnails.ndim)
if isinstance(thumbnails, list):
if not isinstance(thumbnails[0], np.ndarray) or thumbnails[0].ndim != 3:
raise ValueError('Each element of "thumbnails" must be a 3D `ndarray`')
thumbnails = np.array(thumbnails)
with ops.Graph().as_default():
s = session.Session()
resized_images = image_ops.resize_images(thumbnails, thumbnail_dim).eval(
session=s)
images_per_row = int(math.ceil(math.sqrt(len(thumbnails))))
thumb_height = thumbnail_dim[0]
thumb_width = thumbnail_dim[1]
master_height = images_per_row * thumb_height
master_width = images_per_row * thumb_width
num_channels = thumbnails.shape[3]
master = np.zeros([master_height, master_width, num_channels])
for idx, image in enumerate(resized_images):
left_idx = idx % images_per_row
top_idx = int(math.floor(idx / images_per_row))
left_start = left_idx * thumb_width
left_end = left_start + thumb_width
top_start = top_idx * thumb_height
top_end = top_start + thumb_height
master[top_start:top_end, left_start:left_end, :] = image
return image_ops.encode_png(master).eval(session=s)
示例4: testResizeDownArea
def testResizeDownArea(self):
img_shape = [1, 6, 6, 1]
data = [128, 64, 32, 16, 8, 4,
4, 8, 16, 32, 64, 128,
128, 64, 32, 16, 8, 4,
5, 10, 15, 20, 25, 30,
30, 25, 20, 15, 10, 5,
5, 10, 15, 20, 25, 30]
img_np = np.array(data, dtype=np.uint8).reshape(img_shape)
target_height = 4
target_width = 4
expected_data = [73, 33, 23, 39,
73, 33, 23, 39,
14, 16, 19, 21,
14, 16, 19, 21]
with self.test_session():
image = constant_op.constant(img_np, shape=img_shape)
y = image_ops.resize_images(image, target_height, target_width,
image_ops.ResizeMethod.AREA)
expected = np.array(expected_data).reshape(
[1, target_height, target_width, 1])
resized = y.eval()
self.assertAllClose(resized, expected, atol=1)
示例5: testResizeUpBicubic
def testResizeUpBicubic(self):
img_shape = [1, 6, 6, 1]
data = [128, 128, 64, 64, 128, 128, 64, 64,
64, 64, 128, 128, 64, 64, 128, 128,
50, 50, 100, 100, 50, 50, 100, 100,
50, 50, 100, 100, 50, 50, 100, 100,
50, 50, 100, 100]
img_np = np.array(data, dtype=np.uint8).reshape(img_shape)
target_height = 8
target_width = 8
expected_data = [128, 135, 96, 55, 64, 114, 134, 128,
78, 81, 68, 52, 57, 118, 144, 136,
55, 49, 79, 109, 103, 89, 83, 84,
74, 70, 95, 122, 115, 69, 49, 55,
100, 105, 75, 43, 50, 89, 105, 100,
57, 54, 74, 96, 91, 65, 55, 58,
70, 69, 75, 81, 80, 72, 69, 70,
105, 112, 75, 36, 45, 92, 111, 105]
with self.test_session():
image = constant_op.constant(img_np, shape=img_shape)
y = image_ops.resize_images(image, target_height, target_width,
image_ops.ResizeMethod.BICUBIC)
resized = y.eval()
expected = np.array(expected_data).reshape(
[1, target_height, target_width, 1])
self.assertAllClose(resized, expected, atol=1)
示例6: testResizeDown
def testResizeDown(self):
data = [128, 128, 64, 64,
128, 128, 64, 64,
64, 64, 128, 128,
64, 64, 128, 128,
50, 50, 100, 100,
50, 50, 100, 100]
expected_data = [128, 64,
64, 128,
50, 100]
target_height = 3
target_width = 2
# Test out 3-D and 4-D image shapes.
img_shapes = [[1, 6, 4, 1], [6, 4, 1]]
target_shapes = [[1, target_height, target_width, 1],
[target_height, target_width, 1]]
for target_shape, img_shape in zip(target_shapes, img_shapes):
img_np = np.array(data, dtype=np.uint8).reshape(img_shape)
for opt in self.OPTIONS:
with self.test_session():
image = constant_op.constant(img_np, shape=img_shape)
y = image_ops.resize_images(image, target_height, target_width, opt)
expected = np.array(expected_data).reshape(target_shape)
resized = y.eval()
self.assertAllClose(resized, expected, atol=1e-5)
示例7: testResizeDown
def testResizeDown(self):
# This test is also conducted with int8, so 127 is the maximum
# value that can be used.
data = [127, 127, 64, 64,
127, 127, 64, 64,
64, 64, 127, 127,
64, 64, 127, 127,
50, 50, 100, 100,
50, 50, 100, 100]
expected_data = [127, 64,
64, 127,
50, 100]
target_height = 3
target_width = 2
# Test out 3-D and 4-D image shapes.
img_shapes = [[1, 6, 4, 1], [6, 4, 1]]
target_shapes = [[1, target_height, target_width, 1],
[target_height, target_width, 1]]
for target_shape, img_shape in zip(target_shapes, img_shapes):
for nptype in self.TYPES:
img_np = np.array(data, dtype=nptype).reshape(img_shape)
for opt in self.OPTIONS:
with self.test_session():
image = constant_op.constant(img_np, shape=img_shape)
y = image_ops.resize_images(image, target_height, target_width, opt)
expected = np.array(expected_data).reshape(target_shape)
resized = y.eval()
self.assertAllClose(resized, expected, atol=1e-5)
示例8: testCompareNearestNeighbor
def testCompareNearestNeighbor(self):
input_shape = [1, 5, 5, 3]
target_height = target_width = 10
for nptype in [np.float]:
for align_corners in [True, False]:
img_np = np.arange(0, np.prod(input_shape), dtype=nptype).reshape(input_shape)
with self.test_session(use_gpu=True):
image = constant_op.constant(img_np, shape=input_shape)
out_op = image_ops.resize_images(image, target_height, target_width,
image_ops.ResizeMethod.NEAREST_NEIGHBOR,
align_corners=align_corners)
gpu_val = out_op.eval()
with self.test_session(use_gpu=False):
image = constant_op.constant(img_np, shape=input_shape)
out_op = image_ops.resize_images(image, target_height, target_width,
image_ops.ResizeMethod.NEAREST_NEIGHBOR,
align_corners=align_corners)
cpu_val = out_op.eval()
self.assertAllClose(cpu_val, gpu_val, rtol=1e-5, atol=1e-5)
示例9: testResizeUp
def testResizeUp(self):
img_shape = [1, 3, 2, 1]
data = [64, 32,
32, 64,
50, 100]
target_height = 6
target_width = 4
expected_data = {}
expected_data[image_ops.ResizeMethod.BILINEAR] = [
64.0, 48.0, 32.0, 32.0,
48.0, 48.0, 48.0, 48.0,
32.0, 48.0, 64.0, 64.0,
41.0, 61.5, 82.0, 82.0,
50.0, 75.0, 100.0, 100.0,
50.0, 75.0, 100.0, 100.0]
expected_data[image_ops.ResizeMethod.NEAREST_NEIGHBOR] = [
64.0, 64.0, 32.0, 32.0,
64.0, 64.0, 32.0, 32.0,
32.0, 32.0, 64.0, 64.0,
32.0, 32.0, 64.0, 64.0,
50.0, 50.0, 100.0, 100.0,
50.0, 50.0, 100.0, 100.0]
expected_data[image_ops.ResizeMethod.AREA] = [
64.0, 64.0, 32.0, 32.0,
64.0, 64.0, 32.0, 32.0,
32.0, 32.0, 64.0, 64.0,
32.0, 32.0, 64.0, 64.0,
50.0, 50.0, 100.0, 100.0,
50.0, 50.0, 100.0, 100.0]
for nptype in self.TYPES:
for opt in [
image_ops.ResizeMethod.BILINEAR,
image_ops.ResizeMethod.NEAREST_NEIGHBOR,
image_ops.ResizeMethod.AREA]:
for use_gpu in self.availableGPUModes(opt, nptype):
with self.test_session(use_gpu=use_gpu):
img_np = np.array(data, dtype=nptype).reshape(img_shape)
image = constant_op.constant(img_np, shape=img_shape)
y = image_ops.resize_images(image, target_height, target_width, opt)
resized = y.eval()
expected = np.array(expected_data[opt]).reshape(
[1, target_height, target_width, 1])
self.assertAllClose(resized, expected, atol=1e-05)
示例10: testTensorArguments
def testTensorArguments(self):
img_shape = [1, 6, 4, 1]
single_shape = [6, 4, 1]
# This test is also conducted with int8, so 127 is the maximum
# value that can be used.
data = [127, 127, 64, 64,
127, 127, 64, 64,
64, 64, 127, 127,
64, 64, 127, 127,
50, 50, 100, 100,
50, 50, 100, 100]
target_height = array_ops.placeholder(dtypes.int32)
target_width = array_ops.placeholder(dtypes.int32)
img_np = np.array(data, dtype=np.uint8).reshape(img_shape)
for opt in self.OPTIONS:
with self.test_session() as sess:
image = constant_op.constant(img_np, shape=img_shape)
y = image_ops.resize_images(image, target_height, target_width, opt)
yshape = array_ops.shape(y)
resized, newshape = sess.run([y, yshape], {target_height: 6,
target_width: 4})
self.assertAllEqual(img_shape, newshape)
self.assertAllClose(resized, img_np, atol=1e-5)
# Resizing with a single image must leave the shape unchanged also.
with self.test_session():
img_single = img_np.reshape(single_shape)
image = constant_op.constant(img_single, shape=single_shape)
y = image_ops.resize_images(image, target_height, target_width,
self.OPTIONS[0])
yshape = array_ops.shape(y)
newshape = yshape.eval(feed_dict={target_height: 6, target_width: 4})
self.assertAllEqual(single_shape, newshape)
# Incorrect shape.
with self.assertRaises(ValueError):
_ = image_ops.resize_images(
image, [12, 32], 4, image_ops.ResizeMethod.BILINEAR)
with self.assertRaises(ValueError):
_ = image_ops.resize_images(
image, 6, [12, 32], image_ops.ResizeMethod.BILINEAR)
# Incorrect dtypes.
with self.assertRaises(ValueError):
_ = image_ops.resize_images(
image, 6.0, 4, image_ops.ResizeMethod.BILINEAR)
with self.assertRaises(ValueError):
_ = image_ops.resize_images(
image, 6, 4.0, image_ops.ResizeMethod.BILINEAR)
示例11: testResizeUp
def testResizeUp(self):
img_shape = [1, 3, 2, 1]
data = [128, 64,
64, 128,
50, 100]
img_np = np.array(data, dtype=np.uint8).reshape(img_shape)
target_height = 6
target_width = 4
expected_data = {}
expected_data[image_ops.ResizeMethod.BILINEAR] = [
128.0, 96.0, 64.0, 64.0,
96.0, 96.0, 96.0, 96.0,
64.0, 96.0, 128.0, 128.0,
57.0, 85.5, 114.0, 114.0,
50.0, 75.0, 100.0, 100.0,
50.0, 75.0, 100.0, 100.0]
expected_data[image_ops.ResizeMethod.NEAREST_NEIGHBOR] = [
128.0, 128.0, 64.0, 64.0,
128.0, 128.0, 64.0, 64.0,
64.0, 64.0, 128.0, 128.0,
64.0, 64.0, 128.0, 128.0,
50.0, 50.0, 100.0, 100.0,
50.0, 50.0, 100.0, 100.0]
expected_data[image_ops.ResizeMethod.AREA] = [
128.0, 128.0, 64.0, 64.0,
128.0, 128.0, 64.0, 64.0,
64.0, 64.0, 128.0, 128.0,
64.0, 64.0, 128.0, 128.0,
50.0, 50.0, 100.0, 100.0,
50.0, 50.0, 100.0, 100.0]
for opt in [
image_ops.ResizeMethod.BILINEAR,
image_ops.ResizeMethod.NEAREST_NEIGHBOR,
image_ops.ResizeMethod.AREA]:
with self.test_session():
image = constant_op.constant(img_np, shape=img_shape)
y = image_ops.resize_images(image, target_height, target_width, opt)
resized = y.eval()
expected = np.array(expected_data[opt]).reshape(
[1, target_height, target_width, 1])
self.assertAllClose(resized, expected, atol=1e-05)
示例12: testNoOp
def testNoOp(self):
img_shape = [1, 6, 4, 1]
data = [128, 128, 64, 64,
128, 128, 64, 64,
64, 64, 128, 128,
64, 64, 128, 128,
50, 50, 100, 100,
50, 50, 100, 100]
img_np = np.array(data, dtype=np.uint8).reshape(img_shape)
target_height = 6
target_width = 4
for opt in self.OPTIONS:
with self.test_session():
image = constant_op.constant(img_np, shape=img_shape)
y = image_ops.resize_images(image, target_height, target_width, opt)
resized = y.eval()
self.assertAllClose(resized, img_np, atol=1e-5)