本文整理汇总了Python中tensorflow.python.ops.gen_array_ops._broadcast_gradient_args函数的典型用法代码示例。如果您正苦于以下问题:Python _broadcast_gradient_args函数的具体用法?Python _broadcast_gradient_args怎么用?Python _broadcast_gradient_args使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了_broadcast_gradient_args函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _SubGrad
def _SubGrad(op, grad):
x = op.inputs[0]
y = op.inputs[1]
sx = array_ops.shape(x)
sy = array_ops.shape(y)
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
return (array_ops.reshape(math_ops.reduce_sum(grad, rx), sx), array_ops.reshape(-math_ops.reduce_sum(grad, ry), sy))
示例2: _BetaincGrad
def _BetaincGrad(op, grad):
"""Returns gradient of betainc(a, b, x) with respect to x."""
# TODO(ebrevdo): Perhaps add the derivative w.r.t. a, b
a, b, x = op.inputs
# two cases: x is a scalar and a/b are same-shaped tensors, or vice
# versa; so its sufficient to check against shape(a).
sa = array_ops.shape(a)
sx = array_ops.shape(x)
# pylint: disable=protected-access
_, rx = gen_array_ops._broadcast_gradient_args(sa, sx)
# pylint: enable=protected-access
# Perform operations in log space before summing, because terms
# can grow large.
log_beta = (
gen_math_ops.lgamma(a) + gen_math_ops.lgamma(b) -
gen_math_ops.lgamma(a + b))
partial_x = math_ops.exp((b - 1) * math_ops.log(1 - x) +
(a - 1) * math_ops.log(x) - log_beta)
# TODO(b/36815900): Mark None return values as NotImplemented
return (
None, # da
None, # db
array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx))
示例3: _reduce_and_reshape_grad
def _reduce_and_reshape_grad(g, t):
"""Returns the gradient, sum-reduced and reshaped to `t`'s shape."""
shape = array_ops.shape(t)
g_shape = array_ops.shape(g)
# pylint: disable=protected-access
bcast_dims, _ = gen_array_ops._broadcast_gradient_args(shape, g_shape)
# pylint: enable=protected-access
return array_ops.reshape(math_ops.reduce_sum(g, bcast_dims), shape)
示例4: _DivGrad
def _DivGrad(op, grad):
x = op.inputs[0]
y = op.inputs[1]
sx = array_ops.shape(x)
sy = array_ops.shape(y)
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy) # pylint: disable=protected-access
return (array_ops.reshape(math_ops.reduce_sum(grad / y, rx), sx),
array_ops.reshape(math_ops.reduce_sum(grad *
(-x / math_ops.square(y)), ry), sy))
示例5: _ComplexGrad
def _ComplexGrad(op, grad):
"""Returns the real and imaginary components of 'grad', respectively."""
x = op.inputs[0]
y = op.inputs[1]
sx = array_ops.shape(x)
sy = array_ops.shape(y)
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
return (array_ops.reshape(math_ops.reduce_sum(math_ops.real(grad), rx), sx),
array_ops.reshape(math_ops.reduce_sum(math_ops.imag(grad), ry), sy))
示例6: _PowGrad
def _PowGrad(op, grad):
"""Returns grad * (y*x^(y-1), z*log(x))."""
x = op.inputs[0]
y = op.inputs[1]
z = op.outputs[0]
sx = array_ops.shape(x)
sy = array_ops.shape(y)
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
gx = array_ops.reshape(math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
gy = array_ops.reshape(math_ops.reduce_sum(grad * z * math_ops.log(x), ry), sy)
return gx, gy
示例7: _MulGrad
def _MulGrad(op, grad):
"""The gradient of scalar multiplication."""
x = op.inputs[0]
y = op.inputs[1]
assert x.dtype.base_dtype == y.dtype.base_dtype, (x.dtype, " vs. ", y.dtype)
sx = array_ops.shape(x)
sy = array_ops.shape(y)
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
x = math_ops.conj(x)
y = math_ops.conj(y)
return (array_ops.reshape(math_ops.reduce_sum(grad * y, rx), sx),
array_ops.reshape(math_ops.reduce_sum(x * grad, ry), sy))
示例8: _PowGrad
def _PowGrad(op, grad):
"""Returns grad * (y*x^(y-1), z*log(x))."""
x = op.inputs[0]
y = op.inputs[1]
z = op.outputs[0]
sx = array_ops.shape(x)
sy = array_ops.shape(y)
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
gx = array_ops.reshape(math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
# Avoid false singularity at x = 0
log_x = math_ops.select(x > 0, math_ops.log(x), array_ops.zeros_like(x))
gy = array_ops.reshape(math_ops.reduce_sum(grad * z * log_x, ry), sy)
return gx, gy
示例9: _PolygammaGrad
def _PolygammaGrad(op, grad):
"""Returns gradient of psi(n, x) with respect to n and x."""
# TODO(tillahoffmann): Add derivative with respect to n
n = op.inputs[0]
x = op.inputs[1]
# Broadcast gradients
sn = array_ops.shape(n)
sx = array_ops.shape(x)
unused_rn, rx = gen_array_ops._broadcast_gradient_args(sn, sx)
# Evaluate gradient
with ops.control_dependencies([grad.op]):
partial_x = math_ops.polygamma(n + 1, x)
return (None, array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx))
示例10: _ZetaGrad
def _ZetaGrad(op, grad):
"""Returns gradient of zeta(x, q) with respect to x and q."""
# TODO(tillahoffmann): Add derivative with respect to x
x = op.inputs[0]
q = op.inputs[1]
# Broadcast gradients
sx = array_ops.shape(x)
sq = array_ops.shape(q)
unused_rx, rq = gen_array_ops._broadcast_gradient_args(sx, sq)
# Evaluate gradient
with ops.control_dependencies([grad.op]):
partial_q = -x * math_ops.zeta(x + 1, q)
return (None, array_ops.reshape(math_ops.reduce_sum(partial_q * grad, rq), sq))
示例11: _IgammaGrad
def _IgammaGrad(op, grad):
"""Returns gradient of igamma(a, x) with respect to a and x."""
# TODO(ebrevdo): Perhaps add the derivative w.r.t. a
a = op.inputs[0]
x = op.inputs[1]
sa = array_ops.shape(a)
sx = array_ops.shape(x)
unused_ra, rx = gen_array_ops._broadcast_gradient_args(sa, sx)
# Perform operations in log space before summing, because Gamma(a)
# and Gamma'(a) can grow large.
partial_x = math_ops.exp(-x + (a - 1) * math_ops.log(x) - math_ops.lgamma(a))
return (None, array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx))
示例12: _MulGrad
def _MulGrad(op, grad):
x = op.inputs[0]
y = op.inputs[1]
assert x.dtype.base_dtype == y.dtype.base_dtype, (x.dtype, " vs. ", y.dtype)
sx = array_ops.shape(x)
sy = array_ops.shape(y)
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
if x.dtype.base_dtype == dtypes.complex64:
return (array_ops.reshape(math_ops.reduce_sum(grad * math_ops.conj(y), rx), sx),
array_ops.reshape(math_ops.reduce_sum(math_ops.conj(x) * grad, ry), sy))
else:
return (array_ops.reshape(math_ops.reduce_sum(grad * y, rx), sx),
array_ops.reshape(math_ops.reduce_sum(x * grad, ry), sy))
示例13: _DivGrad
def _DivGrad(op, grad):
"""The gradient for the Div operator."""
x = op.inputs[0]
y = op.inputs[1]
sx = array_ops.shape(x)
sy = array_ops.shape(y)
# pylint: disable=protected-access
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
# pylint: enable=protected-access
x = math_ops.conj(x)
y = math_ops.conj(y)
return (array_ops.reshape(math_ops.reduce_sum(math_ops.div(grad, y), rx), sx),
array_ops.reshape(math_ops.reduce_sum(
grad * math_ops.div(-x, math_ops.square(y)), ry), sy))
示例14: _SubGrad
def _SubGrad(op, grad):
"""Gradient for Sub."""
x = op.inputs[0]
y = op.inputs[1]
if (isinstance(grad, ops.Tensor) and
_ShapesFullySpecifiedAndEqual(x, y, grad)):
return grad, -grad
sx = array_ops.shape(x)
sy = array_ops.shape(y)
# pylint: disable=protected-access
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
# pylint: enable=protected-access
return (array_ops.reshape(math_ops.reduce_sum(grad, rx), sx),
array_ops.reshape(-math_ops.reduce_sum(grad, ry), sy))
示例15: _FloorModGrad
def _FloorModGrad(op, grad):
"""Returns grad * (1, -floor(x/y))."""
x = math_ops.conj(op.inputs[0])
y = math_ops.conj(op.inputs[1])
sx = array_ops.shape(x)
sy = array_ops.shape(y)
# pylint: disable=protected-access
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
# pylint: enable=protected-access
floor_xy = math_ops.floor_div(x, y)
gx = array_ops.reshape(math_ops.reduce_sum(grad, rx), sx)
gy = array_ops.reshape(
math_ops.reduce_sum(grad * math_ops.negative(floor_xy), ry), sy)
return gx, gy