当前位置: 首页>>代码示例>>Python>>正文


Python util.embed_check_nonnegative_integer_form函数代码示例

本文整理汇总了Python中tensorflow.python.ops.distributions.util.embed_check_nonnegative_integer_form函数的典型用法代码示例。如果您正苦于以下问题:Python embed_check_nonnegative_integer_form函数的具体用法?Python embed_check_nonnegative_integer_form怎么用?Python embed_check_nonnegative_integer_form使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了embed_check_nonnegative_integer_form函数的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _log_unnormalized_prob

 def _log_unnormalized_prob(self, x):
   if self.validate_args:
     x = distribution_util.embed_check_nonnegative_integer_form(x)
   else:
     # For consistency with cdf, we take the floor.
     x = math_ops.floor(x)
   return x * self.log_rate - math_ops.lgamma(1. + x)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:7,代码来源:poisson.py

示例2: _cdf

 def _cdf(self, x):
   if self.validate_args:
     x = distribution_util.embed_check_nonnegative_integer_form(x)
   else:
     # Whether or not x is integer-form, the following is well-defined.
     # However, scipy takes the floor, so we do too.
     x = math_ops.floor(x)
   return math_ops.igammac(1. + x, self.rate)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:8,代码来源:poisson.py

示例3: __init__

  def __init__(self,
               total_count,
               logits=None,
               probs=None,
               validate_args=False,
               allow_nan_stats=True,
               name="Multinomial"):
    """Initialize a batch of Multinomial distributions.

    Args:
      total_count: Non-negative floating point tensor with shape broadcastable
        to `[N1,..., Nm]` with `m >= 0`. Defines this as a batch of
        `N1 x ... x Nm` different Multinomial distributions. Its components
        should be equal to integer values.
      logits: Floating point tensor representing unnormalized log-probabilities
        of a positive event with shape broadcastable to
        `[N1,..., Nm, K]` `m >= 0`, and the same dtype as `total_count`. Defines
        this as a batch of `N1 x ... x Nm` different `K` class Multinomial
        distributions. Only one of `logits` or `probs` should be passed in.
      probs: Positive floating point tensor with shape broadcastable to
        `[N1,..., Nm, K]` `m >= 0` and same dtype as `total_count`. Defines
        this as a batch of `N1 x ... x Nm` different `K` class Multinomial
        distributions. `probs`'s components in the last portion of its shape
        should sum to `1`. Only one of `logits` or `probs` should be passed in.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value "`NaN`" to indicate the
        result is undefined. When `False`, an exception is raised if one or
        more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.
    """
    parameters = locals()
    with ops.name_scope(name, values=[total_count, logits, probs]):
      self._total_count = ops.convert_to_tensor(total_count, name="total_count")
      if validate_args:
        self._total_count = (
            distribution_util.embed_check_nonnegative_integer_form(
                self._total_count))
      self._logits, self._probs = distribution_util.get_logits_and_probs(
          logits=logits,
          probs=probs,
          multidimensional=True,
          validate_args=validate_args,
          name=name)
      self._mean_val = self._total_count[..., array_ops.newaxis] * self._probs
    super(Multinomial, self).__init__(
        dtype=self._probs.dtype,
        reparameterization_type=distribution.NOT_REPARAMETERIZED,
        validate_args=validate_args,
        allow_nan_stats=allow_nan_stats,
        parameters=parameters,
        graph_parents=[self._total_count,
                       self._logits,
                       self._probs],
        name=name)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:58,代码来源:multinomial.py

示例4: __init__

  def __init__(self,
               total_count,
               concentration,
               validate_args=False,
               allow_nan_stats=True,
               name="DirichletMultinomial"):
    """Initialize a batch of DirichletMultinomial distributions.

    Args:
      total_count:  Non-negative floating point tensor, whose dtype is the same
        as `concentration`. The shape is broadcastable to `[N1,..., Nm]` with
        `m >= 0`. Defines this as a batch of `N1 x ... x Nm` different
        Dirichlet multinomial distributions. Its components should be equal to
        integer values.
      concentration: Positive floating point tensor, whose dtype is the
        same as `n` with shape broadcastable to `[N1,..., Nm, K]` `m >= 0`.
        Defines this as a batch of `N1 x ... x Nm` different `K` class Dirichlet
        multinomial distributions.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value "`NaN`" to indicate the
        result is undefined. When `False`, an exception is raised if one or
        more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.
    """
    parameters = locals()
    with ops.name_scope(name, values=[total_count, concentration]):
      # Broadcasting works because:
      # * The broadcasting convention is to prepend dimensions of size [1], and
      #   we use the last dimension for the distribution, whereas
      #   the batch dimensions are the leading dimensions, which forces the
      #   distribution dimension to be defined explicitly (i.e. it cannot be
      #   created automatically by prepending). This forces enough explicitness.
      # * All calls involving `counts` eventually require a broadcast between
      #  `counts` and concentration.
      self._total_count = ops.convert_to_tensor(total_count, name="total_count")
      if validate_args:
        self._total_count = (
            distribution_util.embed_check_nonnegative_integer_form(
                self._total_count))
      self._concentration = self._maybe_assert_valid_concentration(
          ops.convert_to_tensor(concentration,
                                name="concentration"),
          validate_args)
      self._total_concentration = math_ops.reduce_sum(self._concentration, -1)
    super(DirichletMultinomial, self).__init__(
        dtype=self._concentration.dtype,
        validate_args=validate_args,
        allow_nan_stats=allow_nan_stats,
        reparameterization_type=distribution.NOT_REPARAMETERIZED,
        parameters=parameters,
        graph_parents=[self._total_count,
                       self._concentration],
        name=name)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:57,代码来源:dirichlet_multinomial.py

示例5: _maybe_assert_valid_sample

 def _maybe_assert_valid_sample(self, counts):
   """Check counts for proper shape, values, then return tensor version."""
   if not self.validate_args:
     return counts
   counts = distribution_util.embed_check_nonnegative_integer_form(counts)
   return control_flow_ops.with_dependencies([
       check_ops.assert_equal(
           self.total_count, math_ops.reduce_sum(counts, -1),
           message="counts last-dimension must sum to `self.total_count`"),
   ], counts)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:10,代码来源:dirichlet_multinomial.py

示例6: _maybe_assert_valid_sample

 def _maybe_assert_valid_sample(self, counts):
   """Check counts for proper shape, values, then return tensor version."""
   if not self.validate_args:
     return counts
   counts = distribution_util.embed_check_nonnegative_integer_form(counts)
   return control_flow_ops.with_dependencies([
       check_ops.assert_less_equal(
           counts, self.total_count,
           message="counts are not less than or equal to n."),
   ], counts)
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:10,代码来源:binomial.py

示例7: _log_prob

 def _log_prob(self, x):
   if self.validate_args:
     x = distribution_util.embed_check_nonnegative_integer_form(x)
   else:
     # For consistency with cdf, we take the floor.
     x = tf.floor(x)
   x *= tf.ones_like(self.probs)
   probs = self.probs * tf.ones_like(x)
   safe_domain = tf.where(tf.equal(x, 0.), tf.zeros_like(probs), probs)
   return x * tf.log1p(-safe_domain) + tf.log(probs)
开发者ID:lewisKit,项目名称:probability,代码行数:10,代码来源:geometric.py

示例8: _cdf

 def _cdf(self, x):
   if self.validate_args:
     x = distribution_util.embed_check_nonnegative_integer_form(x)
   else:
     # Whether or not x is integer-form, the following is well-defined.
     # However, scipy takes the floor, so we do too.
     x = tf.floor(x)
   x *= tf.ones_like(self.probs)
   return tf.where(x < 0., tf.zeros_like(x), -tf.expm1(
       (1. + x) * tf.log1p(-self.probs)))
开发者ID:lewisKit,项目名称:probability,代码行数:10,代码来源:geometric.py

示例9: _log_normalization

 def _log_normalization(self, x):
   if self.validate_args:
     x = distribution_util.embed_check_nonnegative_integer_form(x)
   return (-math_ops.lgamma(self.total_count + x)
           + math_ops.lgamma(1. + x)
           + math_ops.lgamma(self.total_count))
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:6,代码来源:negative_binomial.py

示例10: _log_unnormalized_prob

 def _log_unnormalized_prob(self, x):
   if self.validate_args:
     x = distribution_util.embed_check_nonnegative_integer_form(x)
   return (self.total_count * math_ops.log_sigmoid(-self.logits)
           + x * math_ops.log_sigmoid(self.logits))
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:5,代码来源:negative_binomial.py

示例11: _cdf

 def _cdf(self, x):
   if self.validate_args:
     x = distribution_util.embed_check_nonnegative_integer_form(x)
   return math_ops.betainc(self.total_count, 1. + x,
                           math_ops.sigmoid(-self.logits))
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:5,代码来源:negative_binomial.py

示例12: _log_unnormalized_prob

 def _log_unnormalized_prob(self, x):
   if self.validate_args:
     x = distribution_util.embed_check_nonnegative_integer_form(x)
   return x * self.log_rate - math_ops.lgamma(1. + x)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:4,代码来源:poisson.py

示例13: _cdf

 def _cdf(self, x):
   if self.validate_args:
     x = distribution_util.embed_check_nonnegative_integer_form(x)
   return math_ops.igammac(1. + x, self.rate)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:4,代码来源:poisson.py


注:本文中的tensorflow.python.ops.distributions.util.embed_check_nonnegative_integer_form函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。