当前位置: 首页>>代码示例>>Python>>正文


Python check_ops.assert_greater_equal函数代码示例

本文整理汇总了Python中tensorflow.python.ops.check_ops.assert_greater_equal函数的典型用法代码示例。如果您正苦于以下问题:Python assert_greater_equal函数的具体用法?Python assert_greater_equal怎么用?Python assert_greater_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了assert_greater_equal函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_doesnt_raise_when_both_empty

 def test_doesnt_raise_when_both_empty(self):
   larry = constant_op.constant([])
   curly = constant_op.constant([])
   with ops.control_dependencies(
       [check_ops.assert_greater_equal(larry, curly)]):
     out = array_ops.identity(larry)
   self.evaluate(out)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:7,代码来源:check_ops_test.py

示例2: test_doesnt_raise_when_equal

 def test_doesnt_raise_when_equal(self):
   with self.test_session():
     small = constant_op.constant([1, 2], name="small")
     with ops.control_dependencies(
         [check_ops.assert_greater_equal(small, small)]):
       out = array_ops.identity(small)
     out.eval()
开发者ID:1000sprites,项目名称:tensorflow,代码行数:7,代码来源:check_ops_test.py

示例3: _check_valid_event_ndims

  def _check_valid_event_ndims(self, min_event_ndims, event_ndims):
    """Check whether event_ndims is atleast min_event_ndims."""
    event_ndims = ops.convert_to_tensor(event_ndims, name="event_ndims")
    event_ndims_ = tensor_util.constant_value(event_ndims)
    assertions = []

    if not event_ndims.dtype.is_integer:
      raise ValueError("Expected integer dtype, got dtype {}".format(
          event_ndims.dtype))

    if event_ndims_ is not None:
      if event_ndims.shape.ndims != 0:
        raise ValueError("Expected scalar event_ndims, got shape {}".format(
            event_ndims.shape))
      if min_event_ndims > event_ndims_:
        raise ValueError("event_ndims ({}) must be larger than "
                         "min_event_ndims ({})".format(
                             event_ndims_, min_event_ndims))
    elif self.validate_args:
      assertions += [
          check_ops.assert_greater_equal(event_ndims, min_event_ndims)]

    if event_ndims.shape.is_fully_defined():
      if event_ndims.shape.ndims != 0:
        raise ValueError("Expected scalar shape, got ndims {}".format(
            event_ndims.shape.ndims))

    elif self.validate_args:
      assertions += [
          check_ops.assert_rank(event_ndims, 0, message="Expected scalar.")]
    return assertions
开发者ID:AnishShah,项目名称:tensorflow,代码行数:31,代码来源:bijector_impl.py

示例4: test_doesnt_raise_when_greater_equal_and_broadcastable_shapes

 def test_doesnt_raise_when_greater_equal_and_broadcastable_shapes(self):
   small = constant_op.constant([1], name="small")
   big = constant_op.constant([3, 1], name="big")
   with ops.control_dependencies(
       [check_ops.assert_greater_equal(big, small)]):
     out = array_ops.identity(small)
   self.evaluate(out)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:7,代码来源:check_ops_test.py

示例5: _single_batch_sampler

 def _single_batch_sampler(self, sampler):
   # Enforce that there are at least as many data points as centers
   # remaining. This gives the provided sampler the chance to select all
   # remaining centers from a single batch.
   with ops.control_dependencies(
       [check_ops.assert_greater_equal(self._num_data, self._num_remaining)]):
     return sampler()
开发者ID:AnddyWang,项目名称:tensorflow,代码行数:7,代码来源:clustering_ops.py

示例6: test_raises_when_less_equal_but_non_broadcastable_shapes

 def test_raises_when_less_equal_but_non_broadcastable_shapes(self):
   with self.test_session():
     small = constant_op.constant([1, 1, 1], name="big")
     big = constant_op.constant([3, 1], name="small")
     with self.assertRaisesRegexp(ValueError, "Dimensions must be equal"):
       with ops.control_dependencies(
           [check_ops.assert_greater_equal(big, small)]):
         out = array_ops.identity(small)
       out.eval()
开发者ID:1000sprites,项目名称:tensorflow,代码行数:9,代码来源:check_ops_test.py

示例7: test_raises_when_less

 def test_raises_when_less(self):
   small = constant_op.constant([1, 2], name="small")
   big = constant_op.constant([3, 4], name="big")
   with self.assertRaisesOpError("fail"):
     with ops.control_dependencies(
         [check_ops.assert_greater_equal(
             small, big, message="fail")]):
       out = array_ops.identity(small)
     self.evaluate(out)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:9,代码来源:check_ops_test.py

示例8: _validate_aux_loss_weight

def _validate_aux_loss_weight(aux_loss_weight, name='aux_loss_weight'):
  if isinstance(aux_loss_weight, ops.Tensor):
    aux_loss_weight.shape.assert_is_compatible_with([])
    with ops.control_dependencies(
        [check_ops.assert_greater_equal(aux_loss_weight, 0.0)]):
      aux_loss_weight = array_ops.identity(aux_loss_weight)
  elif aux_loss_weight is not None and aux_loss_weight < 0:
    raise ValueError('`%s` must be greater than 0. Instead, was %s' %
                     (name, aux_loss_weight))
  return aux_loss_weight
开发者ID:andrewharp,项目名称:tensorflow,代码行数:10,代码来源:train.py

示例9: check

 def check(t):
   samples_batch_shape = array_ops.shape(samples)[1:]
   broadcasted_batch_shape = array_ops.broadcast_dynamic_shape(
       samples_batch_shape, array_ops.shape(t))
   # This rank check ensures that I don't get a wrong answer from the
   # _shapes_ broadcasting against each other.
   samples_batch_ndims = array_ops.size(samples_batch_shape)
   ge = check_ops.assert_greater_equal(
       samples_batch_ndims, array_ops.rank(t))
   eq = check_ops.assert_equal(samples_batch_shape, broadcasted_batch_shape)
   return ge, eq
开发者ID:ahmedsaiduk,项目名称:tensorflow,代码行数:11,代码来源:statistical_testing.py

示例10: test_raises_when_less_equal_but_non_broadcastable_shapes

 def test_raises_when_less_equal_but_non_broadcastable_shapes(self):
   small = constant_op.constant([1, 1, 1], name="big")
   big = constant_op.constant([3, 1], name="small")
   # The exception in eager and non-eager mode is different because
   # eager mode relies on shape check done as part of the C++ op, while
   # graph mode does shape checks when creating the `Operation` instance.
   with self.assertRaisesRegexp(
       (errors.InvalidArgumentError, ValueError),
       (r"Incompatible shapes: \[2\] vs. \[3\]|"
        r"Dimensions must be equal, but are 2 and 3")):
     with ops.control_dependencies(
         [check_ops.assert_greater_equal(big, small)]):
       out = array_ops.identity(small)
     self.evaluate(out)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:14,代码来源:check_ops_test.py

示例11: _check_valid_event_ndims

 def _check_valid_event_ndims(self, min_event_ndims, event_ndims):
   """Check whether event_ndims is atleast min_event_ndims."""
   assert_static(min_event_ndims)
   event_ndims_ = get_static_value(event_ndims, np.int32)
   assertions = []
   if event_ndims_ is not None:
     if min_event_ndims > event_ndims_:
       raise ValueError("event_ndims ({}) must be larger than "
                        "min_event_ndims ({})".format(
                            event_ndims_, min_event_ndims))
   elif self.validate_args:
     assertions += [
         check_ops.assert_greater_equal(event_ndims, min_event_ndims)]
   return assertions
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:14,代码来源:bijector_impl.py

示例12: _check_valid_event_ndims

  def _check_valid_event_ndims(self, min_event_ndims, event_ndims):
    """Check whether event_ndims is atleast min_event_ndims."""
    min_event_ndims_ = (min_event_ndims if isinstance(min_event_ndims, int)
                        else tensor_util.constant_value(min_event_ndims))
    event_ndims_ = (event_ndims if isinstance(event_ndims, int)
                    else tensor_util.constant_value(event_ndims))

    if min_event_ndims_ is not None and event_ndims_ is not None:
      if min_event_ndims_ > event_ndims_:
        raise ValueError("event_ndims ({}) must be larger than "
                         "min_event_ndims ({})".format(
                             event_ndims_, min_event_ndims_))
      return []

    if self.validate_args:
      return [check_ops.assert_greater_equal(event_ndims, min_event_ndims)]
    return []
开发者ID:kimr843,项目名称:tensorflow,代码行数:17,代码来源:bijector_impl.py

示例13: _minimum_mean

def _minimum_mean(samples, envelope, low, name=None):
  """Returns a stochastic lower bound on the mean of a scalar distribution.

  The idea is that if the true CDF is within an `eps`-envelope of the
  empirical CDF of the samples, and the support is bounded below, then
  the mean is bounded below as well.  In symbols,

  ```none
  sup_x(|F_n(x) - F(x)|) < eps
  ```

  The 0th dimension of `samples` is interpreted as independent and
  identically distributed samples.  The remaining dimensions are
  broadcast together with `envelope` and `low`, and operated on
  separately.

  Args:
    samples: Floating-point tensor of samples from the distribution(s)
      of interest.  Entries are assumed IID across the 0th dimension.
      The other dimensions must broadcast with `envelope` and `low`.
    envelope: Floating-point tensor of sizes of admissible CDF
      envelopes (i.e., the `eps` above).
    low: Floating-point tensor of lower bounds on the distributions'
      supports.
    name: A name for this operation (optional).

  Returns:
    bound: Floating-point tensor of lower bounds on the true means.

  Raises:
    InvalidArgumentError: If some `sample` is found to be smaller than
      the corresponding `low`.
  """
  with ops.name_scope(name, "minimum_mean", [samples, envelope, low]):
    samples = ops.convert_to_tensor(samples, name="samples")
    envelope = ops.convert_to_tensor(envelope, name="envelope")
    low = ops.convert_to_tensor(low, name="low")

    xmin = math_ops.reduce_min(samples, axis=[-1])
    msg = "Given sample minimum value falls below expectations"
    check_op = check_ops.assert_greater_equal(xmin, low, message=msg)
    with ops.control_dependencies([check_op]):
      return - _do_maximum_mean(-samples, envelope, -low)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:43,代码来源:statistical_testing.py

示例14: _maybe_check_valid_shape

  def _maybe_check_valid_shape(self, shape, validate_args):
    """Check that a shape Tensor is int-type and otherwise sane."""
    if not shape.dtype.is_integer:
      raise TypeError("{} dtype ({}) should be `int`-like.".format(
          shape, shape.dtype.name))

    assertions = []

    ndims = array_ops.rank(shape)
    ndims_ = tensor_util.constant_value(ndims)
    if ndims_ is not None and ndims_ > 1:
      raise ValueError("`{}` rank ({}) should be <= 1.".format(
          shape, ndims_))
    elif validate_args:
      assertions.append(check_ops.assert_less_equal(
          ndims, 1, message="`{}` rank should be <= 1.".format(shape)))

    shape_ = tensor_util.constant_value_as_shape(shape)
    if shape_.is_fully_defined():
      es = np.int32(shape_.as_list())
      if sum(es == -1) > 1:
        raise ValueError(
            "`{}` must have at most one `-1` (given {})"
            .format(shape, es))
      if np.any(es < -1):
        raise ValueError(
            "`{}` elements must be either positive integers or `-1`"
            "(given {})."
            .format(shape, es))
    elif validate_args:
      assertions.extend([
          check_ops.assert_less_equal(
              math_ops.reduce_sum(
                  math_ops.cast(math_ops.equal(shape, -1), dtypes.int32)),
              1,
              message="`{}` elements must have at most one `-1`."
              .format(shape)),
          check_ops.assert_greater_equal(
              shape, -1,
              message="`{}` elements must be either positive integers or `-1`."
              .format(shape)),
      ])
    return assertions
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:43,代码来源:reshape.py

示例15: batch_gather_with_default

def batch_gather_with_default(params,
                              indices,
                              default_value='',
                              name=None):
  """Same as `batch_gather` but inserts `default_value` for invalid indices.

  This operation is similar to `batch_gather` except that it will substitute
  the value for invalid indices with `default_value` as the contents.
  See `batch_gather` for more details.


  Args:
    params: A potentially ragged tensor with shape `[B1...BN, P1...PM]` (`N>=0`,
      `M>0`).
    indices: A potentially ragged tensor with shape `[B1...BN, I]` (`N>=0`).
    default_value: A value to be inserted in places where `indices` are out of
      bounds. Must be the same dtype as params and either a scalar or rank 1.
    name: A name for the operation (optional).

  Returns:
    A potentially ragged tensor with shape `[B1...BN, I, P2...PM]`.
    `result.ragged_rank = max(indices.ragged_rank, params.ragged_rank)`.

  #### Example:
    ```python
    >>> params = tf.ragged.constant([
          ['a', 'b', 'c'],
          ['d'],
          [],
          ['e']])
    >>> indices = tf.ragged.constant([[1, 2, -1], [], [], [0, 10]])
    >>> batch_gather_with_default(params, indices, 'FOO')
    [['b', 'c', 'FOO'], [], [], ['e', 'FOO']]
  ```
  """
  with ops.name_scope(name, 'RaggedBatchGatherWithDefault'):
    params = ragged_tensor.convert_to_tensor_or_ragged_tensor(
        params, name='params',
    )
    indices = ragged_tensor.convert_to_tensor_or_ragged_tensor(
        indices, name='indices',
    )
    default_value = ragged_tensor.convert_to_tensor_or_ragged_tensor(
        default_value, name='default_value',
    )
    # TODO(hterry): lift this restriction and support default_values of
    #               of rank > 1
    if (default_value.shape.ndims is not 0
        and default_value.shape.ndims is not 1):
      raise ValueError('"default_value" must be a scalar or vector')
    upper_bounds = None
    if indices.shape.ndims is None:
      raise ValueError('Indices must have a known rank.')
    if params.shape.ndims is None:
      raise ValueError('Params must have a known rank.')

    num_batch_dimensions = indices.shape.ndims - 1
    pad = None
    # The logic for this works as follows:
    # - create a padded params, where:
    #    padded_params[b1...bn, 0] = default_value
    #    padded_params[b1...bn, i] = params[b1...bn, i-1] (i>0)
    # - create an `upper_bounds` Tensor that contains the number of elements
    #   in each innermost rank. Broadcast `upper_bounds` to be the same shape
    #   as `indices`.
    # - check to see which index in `indices` are out of bounds and substitute
    #   it with the index containing `default_value` (the first).
    # - call batch_gather with the indices adjusted.
    with ops.control_dependencies([
        check_ops.assert_greater_equal(array_ops.rank(params),
                                       array_ops.rank(indices))]):
      if ragged_tensor.is_ragged(params):
        row_lengths = ragged_array_ops.expand_dims(
            params.row_lengths(axis=num_batch_dimensions),
            axis=-1)
        upper_bounds = math_ops.cast(row_lengths, indices.dtype)

        pad_shape = _get_pad_shape(params, indices)

        pad = ragged_tensor_shape.broadcast_to(
            default_value, pad_shape)
      else:
        params_shape = array_ops.shape(params)
        pad_shape = array_ops.concat([
            params_shape[:num_batch_dimensions],
            [1],
            params_shape[num_batch_dimensions + 1:params.shape.ndims]
        ], 0)
        upper_bounds = params_shape[num_batch_dimensions]
        pad = array_ops.broadcast_to(default_value, pad_shape)

      # Add `default_value` as the first value in the innermost (ragged) rank.
      pad = math_ops.cast(pad, params.dtype)
      padded_params = array_ops.concat(
          [pad, params], axis=num_batch_dimensions)

      # Adjust the indices by substituting out-of-bound indices to the
      # default-value index (which is the first element)
      shifted_indices = indices + 1
      is_out_of_bounds = (indices < 0) | (indices > upper_bounds)
#.........这里部分代码省略.........
开发者ID:ziky90,项目名称:tensorflow,代码行数:101,代码来源:ragged_batch_gather_with_default_op.py


注:本文中的tensorflow.python.ops.check_ops.assert_greater_equal函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。