当前位置: 首页>>代码示例>>Python>>正文


Python array_ops.zeros函数代码示例

本文整理汇总了Python中tensorflow.python.ops.array_ops.zeros函数的典型用法代码示例。如果您正苦于以下问题:Python zeros函数的具体用法?Python zeros怎么用?Python zeros使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了zeros函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testDifferentShapesGraph

  def testDifferentShapesGraph(self):
    # Tests that a single kernel instance presented with multiple input shapes
    # does not crash with graph execution.
    with ops.device("gpu:0"):
      layer = cudnn_rnn.CudnnGRU(1, 100)
      layer(array_ops.zeros([28, 100, 100]))

      def _Cond(index, accumulation):
        del accumulation  # unused
        return math_ops.less(index, 4)

      def _Body(index, accumulation):
        layer_input = accumulation[:, :, 10 * (1 + index % 2):]
        output, _ = layer(layer_input)
        return index + 1, accumulation + output

      original_input = array_ops.zeros([28, 100, 100])
      _, accumulation = control_flow_ops.while_loop(_Cond, _Body,
                                                    [0, original_input])
      grad, = gradients.gradients(
          math_ops.reduce_sum(accumulation), (original_input,))
    init_op = variables.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      accumulation_eval, grad_eval = sess.run((accumulation, grad))
      self.assertAllEqual([28, 100, 100], accumulation_eval.shape)
      self.assertAllEqual([28, 100, 100], grad_eval.shape)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:27,代码来源:cudnn_rnn_test.py

示例2: testDtype

 def testDtype(self):
   with self.test_session():
     d = array_ops.fill([2, 3], 12., name="fill")
     self.assertEqual(d.get_shape(), [2, 3])
     # Test default type for both constant size and dynamic size
     z = array_ops.zeros([2, 3])
     self.assertEqual(z.dtype, dtypes_lib.float32)
     self.assertEqual([2, 3], z.get_shape())
     self.assertAllEqual(z.eval(), np.zeros([2, 3]))
     z = array_ops.zeros(array_ops.shape(d))
     self.assertEqual(z.dtype, dtypes_lib.float32)
     self.assertEqual([2, 3], z.get_shape())
     self.assertAllEqual(z.eval(), np.zeros([2, 3]))
     # Test explicit type control
     for dtype in [
         dtypes_lib.float32, dtypes_lib.float64, dtypes_lib.int32,
         dtypes_lib.uint8, dtypes_lib.int16, dtypes_lib.int8,
         dtypes_lib.complex64, dtypes_lib.complex128, dtypes_lib.int64,
         dtypes_lib.bool, dtypes_lib.string
     ]:
       z = array_ops.zeros([2, 3], dtype=dtype)
       self.assertEqual(z.dtype, dtype)
       self.assertEqual([2, 3], z.get_shape())
       z_value = z.eval()
       self.assertFalse(np.any(z_value))
       self.assertEqual((2, 3), z_value.shape)
       z = array_ops.zeros(array_ops.shape(d), dtype=dtype)
       self.assertEqual(z.dtype, dtype)
       self.assertEqual([2, 3], z.get_shape())
       z_value = z.eval()
       self.assertFalse(np.any(z_value))
       self.assertEqual((2, 3), z_value.shape)
开发者ID:piyushjaiswal98,项目名称:tensorflow,代码行数:32,代码来源:constant_op_test.py

示例3: testBasicLSTMCellWithDropout

  def testBasicLSTMCellWithDropout(self):

    def _is_close(x, y, digits=4):
      delta = x - y
      return delta < 10**(-digits)

    def _is_close_in(x, items, digits=4):
      for i in items:
        if _is_close(x, i, digits):
          return True
      return False

    keep_prob = 0.5
    c_high = 2.9998924946
    c_low = 0.999983298578
    h_low = 0.761552567265
    h_high = 0.995008519604
    num_units = 5
    allowed_low = [2, 3]

    with self.test_session() as sess:
      with variable_scope.variable_scope(
          "other", initializer=init_ops.constant_initializer(1)):
        x = array_ops.zeros([1, 5])
        c = array_ops.zeros([1, 5])
        h = array_ops.zeros([1, 5])
        state = core_rnn_cell_impl.LSTMStateTuple(c, h)
        cell = rnn_cell.LayerNormBasicLSTMCell(
            num_units, layer_norm=False, dropout_keep_prob=keep_prob)

        g, s = cell(x, state)
        sess.run([variables.global_variables_initializer()])
        res = sess.run([g, s], {
            x.name: np.ones([1, 5]),
            c.name: np.ones([1, 5]),
            h.name: np.ones([1, 5]),
        })

        # Since the returned tensors are of size [1,n]
        # get the first component right now.
        actual_h = res[0][0]
        actual_state_c = res[1].c[0]
        actual_state_h = res[1].h[0]

        # For each item in `c` (the cell inner state) check that
        # it is equal to one of the allowed values `c_high` (not
        # dropped out) or `c_low` (dropped out) and verify that the
        # corresponding item in `h` (the cell activation) is coherent.
        # Count the dropped activations and check that their number is
        # coherent with the dropout probability.
        dropped_count = 0
        self.assertTrue((actual_h == actual_state_h).all())
        for citem, hitem in zip(actual_state_c, actual_state_h):
          self.assertTrue(_is_close_in(citem, [c_low, c_high]))
          if _is_close(citem, c_low):
            self.assertTrue(_is_close(hitem, h_low))
            dropped_count += 1
          elif _is_close(citem, c_high):
            self.assertTrue(_is_close(hitem, h_high))
        self.assertIn(dropped_count, allowed_low)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:60,代码来源:rnn_cell_test.py

示例4: testLSTMCell

 def testLSTMCell(self):
   with self.test_session() as sess:
     num_units = 8
     num_proj = 6
     state_size = num_units + num_proj
     batch_size = 3
     input_size = 2
     with variable_scope.variable_scope(
         "root", initializer=init_ops.constant_initializer(0.5)):
       x = array_ops.zeros([batch_size, input_size])
       m = array_ops.zeros([batch_size, state_size])
       cell = rnn_cell_impl.LSTMCell(
           num_units=num_units,
           num_proj=num_proj,
           forget_bias=1.0,
           state_is_tuple=False)
       output, state = cell(x, m)
       sess.run([variables_lib.global_variables_initializer()])
       res = sess.run([output, state], {
           x.name: np.array([[1., 1.], [2., 2.], [3., 3.]]),
           m.name: 0.1 * np.ones((batch_size, state_size))
       })
       self.assertEqual(len(res), 2)
       # The numbers in results were not calculated, this is mostly just a
       # smoke test.
       self.assertEqual(res[0].shape, (batch_size, num_proj))
       self.assertEqual(res[1].shape, (batch_size, state_size))
       # Different inputs so different outputs and states
       for i in range(1, batch_size):
         self.assertTrue(
             float(np.linalg.norm((res[0][0, :] - res[0][i, :]))) > 1e-6)
         self.assertTrue(
             float(np.linalg.norm((res[1][0, :] - res[1][i, :]))) > 1e-6)
开发者ID:ggaziv,项目名称:tensorflow,代码行数:33,代码来源:core_rnn_cell_test.py

示例5: testRank3InvalidShape2

 def testRank3InvalidShape2(self):
   indices = array_ops.zeros([2, 2, 1], dtypes.int32)
   updates = array_ops.zeros([2, 2], dtypes.int32)
   shape = np.array([2, 2, 2])
   with self.assertRaisesWithPredicateMatch(
       ValueError, "The inner \\d+ dimensions of (input|output)\\.shape="):
     self.scatter_nd(indices, updates, shape)
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:7,代码来源:scatter_nd_ops_test.py

示例6: testGrid2LSTMCellLegacy

  def testGrid2LSTMCellLegacy(self):
    """Test for legacy case (when state_is_tuple=False)."""
    with self.test_session() as sess:
      with variable_scope.variable_scope(
          'root', initializer=init_ops.constant_initializer(0.5)):
        x = array_ops.zeros([1, 3])
        m = array_ops.zeros([1, 8])
        cell = grid_rnn_cell.Grid2LSTMCell(
            2, use_peepholes=True, state_is_tuple=False, output_is_tuple=False)
        self.assertEqual(cell.state_size, 8)

        g, s = cell(x, m)
        self.assertEqual(g.get_shape(), (1, 2))
        self.assertEqual(s.get_shape(), (1, 8))

        sess.run([variables.global_variables_initializer()])
        res = sess.run([g, s], {
            x: np.array([[1., 1., 1.]]),
            m: np.array([[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]])
        })
        self.assertEqual(res[0].shape, (1, 2))
        self.assertEqual(res[1].shape, (1, 8))
        self.assertAllClose(res[0], [[0.95686918, 0.95686918]])
        self.assertAllClose(res[1], [[
            2.41515064, 2.41515064, 0.95686918, 0.95686918, 1.38917875,
            1.49043763, 0.83884692, 0.86036491
        ]])
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:27,代码来源:grid_rnn_test.py

示例7: testBasicLSTMCellStateTupleType

  def testBasicLSTMCellStateTupleType(self):
    with self.test_session():
      with variable_scope.variable_scope(
          "root", initializer=init_ops.constant_initializer(0.5)):
        x = array_ops.zeros([1, 2])
        m0 = (array_ops.zeros([1, 2]),) * 2
        m1 = (array_ops.zeros([1, 2]),) * 2
        cell = rnn_cell_impl.MultiRNNCell(
            [rnn_cell_impl.BasicLSTMCell(2) for _ in range(2)],
            state_is_tuple=True)
        self.assertTrue(isinstance(cell.state_size, tuple))
        self.assertTrue(
            isinstance(cell.state_size[0], rnn_cell_impl.LSTMStateTuple))
        self.assertTrue(
            isinstance(cell.state_size[1], rnn_cell_impl.LSTMStateTuple))

        # Pass in regular tuples
        _, (out_m0, out_m1) = cell(x, (m0, m1))
        self.assertTrue(isinstance(out_m0, rnn_cell_impl.LSTMStateTuple))
        self.assertTrue(isinstance(out_m1, rnn_cell_impl.LSTMStateTuple))

        # Pass in LSTMStateTuples
        variable_scope.get_variable_scope().reuse_variables()
        zero_state = cell.zero_state(1, dtypes.float32)
        self.assertTrue(isinstance(zero_state, tuple))
        self.assertTrue(isinstance(zero_state[0], rnn_cell_impl.LSTMStateTuple))
        self.assertTrue(isinstance(zero_state[1], rnn_cell_impl.LSTMStateTuple))
        _, (out_m0, out_m1) = cell(x, zero_state)
        self.assertTrue(isinstance(out_m0, rnn_cell_impl.LSTMStateTuple))
        self.assertTrue(isinstance(out_m1, rnn_cell_impl.LSTMStateTuple))
开发者ID:ggaziv,项目名称:tensorflow,代码行数:30,代码来源:core_rnn_cell_test.py

示例8: testBasicRNNCellNotTrainable

  def testBasicRNNCellNotTrainable(self):
    with self.test_session() as sess:

      def not_trainable_getter(getter, *args, **kwargs):
        kwargs["trainable"] = False
        return getter(*args, **kwargs)

      with variable_scope.variable_scope(
          "root",
          initializer=init_ops.constant_initializer(0.5),
          custom_getter=not_trainable_getter):
        x = array_ops.zeros([1, 2])
        m = array_ops.zeros([1, 2])
        cell = rnn_cell_impl.BasicRNNCell(2)
        g, _ = cell(x, m)
        self.assertFalse(cell.trainable_variables)
        self.assertEqual([
            "root/basic_rnn_cell/%s:0" % rnn_cell_impl._WEIGHTS_VARIABLE_NAME,
            "root/basic_rnn_cell/%s:0" % rnn_cell_impl._BIAS_VARIABLE_NAME
        ], [v.name for v in cell.non_trainable_variables])
        sess.run([variables_lib.global_variables_initializer()])
        res = sess.run([g], {
            x.name: np.array([[1., 1.]]),
            m.name: np.array([[0.1, 0.1]])
        })
        self.assertEqual(res[0].shape, (1, 2))
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:26,代码来源:core_rnn_cell_test.py

示例9: get_start_state

 def get_start_state(self):
   # State which matches the format we'll return later. Typically this will not
   # be used by the model directly, but the shapes and dtypes should match so
   # that the serving input_receiver_fn gets placeholder shapes correct.
   return (array_ops.zeros([self.input_window_size], dtype=dtypes.int64),
           array_ops.zeros(
               [self.input_window_size, self.num_features], dtype=self.dtype))
开发者ID:1000sprites,项目名称:tensorflow,代码行数:7,代码来源:ar_model.py

示例10: testBasicLSTMCell

 def testBasicLSTMCell(self):
   for dtype in [dtypes.float16, dtypes.float32]:
     np_dtype = dtype.as_numpy_dtype
     with self.test_session(graph=ops.Graph()) as sess:
       with variable_scope.variable_scope(
           "root", initializer=init_ops.constant_initializer(0.5)):
         x = array_ops.zeros([1, 2], dtype=dtype)
         m = array_ops.zeros([1, 8], dtype=dtype)
         cell = rnn_cell_impl.MultiRNNCell(
             [
                 rnn_cell_impl.BasicLSTMCell(2, state_is_tuple=False)
                 for _ in range(2)
             ],
             state_is_tuple=False)
         self.assertEqual(cell.dtype, None)
         g, out_m = cell(x, m)
         # Layer infers the input type.
         self.assertEqual(cell.dtype, dtype.name)
         expected_variable_names = [
             "root/multi_rnn_cell/cell_0/basic_lstm_cell/%s:0" %
             rnn_cell_impl._WEIGHTS_VARIABLE_NAME,
             "root/multi_rnn_cell/cell_0/basic_lstm_cell/%s:0" %
             rnn_cell_impl._BIAS_VARIABLE_NAME,
             "root/multi_rnn_cell/cell_1/basic_lstm_cell/%s:0" %
             rnn_cell_impl._WEIGHTS_VARIABLE_NAME,
             "root/multi_rnn_cell/cell_1/basic_lstm_cell/%s:0" %
             rnn_cell_impl._BIAS_VARIABLE_NAME
         ]
         self.assertEqual(expected_variable_names,
                          [v.name for v in cell.trainable_variables])
         self.assertFalse(cell.non_trainable_variables)
         sess.run([variables_lib.global_variables_initializer()])
         res = sess.run([g, out_m], {
             x.name: np.array([[1., 1.]]),
             m.name: 0.1 * np.ones([1, 8])
         })
         self.assertEqual(len(res), 2)
         variables = variables_lib.global_variables()
         self.assertEqual(expected_variable_names, [v.name for v in variables])
         # The numbers in results were not calculated, this is just a
         # smoke test.
         self.assertAllClose(res[0], np.array(
             [[0.240, 0.240]], dtype=np_dtype), 1e-2)
         expected_mem = np.array(
             [[0.689, 0.689, 0.448, 0.448, 0.398, 0.398, 0.240, 0.240]],
             dtype=np_dtype)
         self.assertAllClose(res[1], expected_mem, 1e-2)
       with variable_scope.variable_scope(
           "other", initializer=init_ops.constant_initializer(0.5)):
         # Test BasicLSTMCell with input_size != num_units.
         x = array_ops.zeros([1, 3], dtype=dtype)
         m = array_ops.zeros([1, 4], dtype=dtype)
         g, out_m = rnn_cell_impl.BasicLSTMCell(2, state_is_tuple=False)(x, m)
         sess.run([variables_lib.global_variables_initializer()])
         res = sess.run(
             [g, out_m], {
                 x.name: np.array([[1., 1., 1.]], dtype=np_dtype),
                 m.name: 0.1 * np.ones([1, 4], dtype=np_dtype)
             })
         self.assertEqual(len(res), 2)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:60,代码来源:core_rnn_cell_test.py

示例11: testResidualWrapperWithSlice

  def testResidualWrapperWithSlice(self):
    with self.test_session() as sess:
      with variable_scope.variable_scope(
          "root", initializer=init_ops.constant_initializer(0.5)):
        x = array_ops.zeros([1, 5])
        m = array_ops.zeros([1, 3])
        base_cell = rnn_cell_impl.GRUCell(3)
        g, m_new = base_cell(x, m)
        variable_scope.get_variable_scope().reuse_variables()

        def residual_with_slice_fn(inp, out):
          inp_sliced = array_ops.slice(inp, [0, 0], [-1, 3])
          return inp_sliced + out

        g_res, m_new_res = rnn_cell_impl.ResidualWrapper(
            base_cell, residual_with_slice_fn)(x, m)
        sess.run([variables_lib.global_variables_initializer()])
        res_g, res_g_res, res_m_new, res_m_new_res = sess.run(
            [g, g_res, m_new, m_new_res], {
                x: np.array([[1., 1., 1., 1., 1.]]),
                m: np.array([[0.1, 0.1, 0.1]])
            })
        # Residual connections
        self.assertAllClose(res_g_res, res_g + [1., 1., 1.])
        # States are left untouched
        self.assertAllClose(res_m_new, res_m_new_res)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:26,代码来源:core_rnn_cell_test.py

示例12: _test_logits_helper

 def _test_logits_helper(self, mode):
   """Tests that the expected logits are passed to mock head."""
   with ops.Graph().as_default():
     training_util.get_or_create_global_step()
     generator_inputs = {'x': array_ops.zeros([5, 4])}
     real_data = (None if mode == model_fn_lib.ModeKeys.PREDICT else
                  array_ops.zeros([5, 4]))
     generator_scope_name = 'generator'
     head = mock_head(self,
                      expected_generator_inputs=generator_inputs,
                      expected_real_data=real_data,
                      generator_scope_name=generator_scope_name)
     estimator_spec = estimator._gan_model_fn(
         features=generator_inputs,
         labels=real_data,
         mode=mode,
         generator_fn=generator_fn,
         discriminator_fn=discriminator_fn,
         generator_scope_name=generator_scope_name,
         head=head)
     with monitored_session.MonitoredTrainingSession(
         checkpoint_dir=self._model_dir) as sess:
       if mode == model_fn_lib.ModeKeys.TRAIN:
         sess.run(estimator_spec.train_op)
       elif mode == model_fn_lib.ModeKeys.EVAL:
         sess.run(estimator_spec.loss)
       elif mode == model_fn_lib.ModeKeys.PREDICT:
         sess.run(estimator_spec.predictions)
       else:
         self.fail('Invalid mode: {}'.format(mode))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:30,代码来源:gan_estimator_test.py

示例13: testClusterSpecPropagationThreeServers2Graphs

  def testClusterSpecPropagationThreeServers2Graphs(self):
    """Boots 3 servers, creates 2 sessions, ensures appropriate operations.

    We create 2 clusterspecs:
     1. server2 as the master, server1 as a worker
     2. server2 as the master, server3 as a worker

    We ensure that variables on the workers are independent.
    """
    server1 = server_lib.Server.create_local_server()
    server2 = server_lib.Server.create_local_server()
    server3 = server_lib.Server.create_local_server()
    cluster_def1 = cluster_pb2.ClusterDef()
    job1 = cluster_def1.job.add()
    job1.name = 'worker1'
    job1.tasks[0] = server2.target[len('grpc://'):]
    job1.tasks[1] = server1.target[len('grpc://'):]

    cluster_def2 = cluster_pb2.ClusterDef()
    job2 = cluster_def2.job.add()
    job2.name = 'worker2'
    job2.tasks[0] = server2.target[len('grpc://'):]
    job2.tasks[1] = server3.target[len('grpc://'):]

    config1 = config_pb2.ConfigProto(cluster_def=cluster_def1)
    config2 = config_pb2.ConfigProto(cluster_def=cluster_def2)

    with ops.Graph().as_default() as g1:
      with ops.device('/job:worker1/task:1'):
        var1 = variables.Variable(array_ops.zeros([2]), name='var1')
        update_op1 = state_ops.assign_add(
            var1, array_ops.ones([2]), name='var1_assign_add')
        init1 = variables.global_variables_initializer()

    with ops.Graph().as_default() as g2:
      with ops.device('/job:worker2/task:1'):
        var2 = variables.Variable(array_ops.zeros([2]), name='var2')
        update_op2 = state_ops.assign_add(
            var2, array_ops.ones([2]), name='var2_assign_add')
        init2 = variables.global_variables_initializer()

    sess1 = session.Session(server2.target, graph=g1, config=config1)
    sess2 = session.Session(server2.target, graph=g2, config=config2)

    init1.run(session=sess1)
    init2.run(session=sess2)

    expected_zeros = np.zeros([2])
    expected_ones = np.ones([2])

    self.assertAllEqual(expected_zeros, sess1.run(var1))
    self.assertAllEqual(expected_zeros, sess2.run(var2))

    self.assertAllEqual(expected_ones, sess1.run(update_op1))
    self.assertAllEqual(expected_ones, sess1.run(var1))
    self.assertAllEqual(expected_zeros, sess2.run(var2))
    self.assertAllEqual(expected_ones, sess2.run(update_op2))
    self.assertAllEqual(expected_ones + expected_ones, sess1.run(update_op1))
    self.assertAllEqual(expected_ones, sess2.run(var2))
    self.assertAllEqual(expected_ones + expected_ones, sess1.run(var1))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:60,代码来源:session_clusterspec_prop_test.py

示例14: _matmul

  def _matmul(self, x, adjoint=False, adjoint_arg=False):
    if self._assert_proper_shapes:
      x = linalg.adjoint(x) if adjoint_arg else x
      aps = linear_operator_util.assert_compatible_matrix_dimensions(self, x)
      x = control_flow_ops.with_dependencies([aps], x)
    if self.is_square:
      # Note that adjoint has no effect since this matrix is self-adjoint.
      if adjoint_arg:
        output_shape = array_ops.concat([
            array_ops.shape(x)[:-2],
            [array_ops.shape(x)[-1], array_ops.shape(x)[-2]]], axis=0)
      else:
        output_shape = array_ops.shape(x)

      return self._possibly_broadcast_batch_shape(
          array_ops.zeros(shape=output_shape, dtype=x.dtype))

    x_shape = array_ops.shape(x)
    n = self._num_columns if adjoint else self._num_rows
    m = x_shape[-2] if adjoint_arg else x_shape[-1]

    output_shape = array_ops.concat([x_shape[:-2], [n, m]], axis=0)

    zeros = array_ops.zeros(shape=output_shape, dtype=x.dtype)
    return self._possibly_broadcast_batch_shape(zeros)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:25,代码来源:linear_operator_zeros.py

示例15: testGrid2BasicRNNCellTied

  def testGrid2BasicRNNCellTied(self):
    with self.test_session() as sess:
      with variable_scope.variable_scope(
          'root', initializer=init_ops.constant_initializer(0.5)):
        x = array_ops.zeros([2, 2])
        m = (array_ops.zeros([2, 2]), array_ops.zeros([2, 2]))
        cell = grid_rnn_cell.Grid2BasicRNNCell(2, tied=True)
        self.assertEqual(cell.state_size, (2, 2))

        g, s = cell(x, m)
        self.assertEqual(g[0].get_shape(), (2, 2))
        self.assertEqual(s[0].get_shape(), (2, 2))
        self.assertEqual(s[1].get_shape(), (2, 2))

        sess.run([variables.global_variables_initializer()])
        res_g, res_s = sess.run([g, s], {
            x:
                np.array([[1., 1.], [2., 2.]]),
            m: (np.array([[0.1, 0.1], [0.2, 0.2]]), np.array([[0.1, 0.1],
                                                              [0.2, 0.2]]))
        })
        self.assertEqual(res_g[0].shape, (2, 2))
        self.assertEqual(res_s[0].shape, (2, 2))
        self.assertEqual(res_s[1].shape, (2, 2))

        self.assertAllClose(res_g, ([[0.94685763, 0.94685763],
                                     [0.99480951, 0.99480951]],))
        self.assertAllClose(
            res_s, ([[0.94685763, 0.94685763], [0.99480951, 0.99480951]],
                    [[0.80049908, 0.80049908], [0.97574311, 0.97574311]]))
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:30,代码来源:grid_rnn_test.py


注:本文中的tensorflow.python.ops.array_ops.zeros函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。