当前位置: 首页>>代码示例>>Python>>正文


Python array_ops.placeholder_with_default函数代码示例

本文整理汇总了Python中tensorflow.python.ops.array_ops.placeholder_with_default函数的典型用法代码示例。如果您正苦于以下问题:Python placeholder_with_default函数的具体用法?Python placeholder_with_default怎么用?Python placeholder_with_default使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了placeholder_with_default函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testBatchFunctionOpWithCapturedInput

  def testBatchFunctionOpWithCapturedInput(self):
    """Tests that batch_function op works with captured input."""
    with self.test_session() as sess:
      captured_inp0 = array_ops.placeholder_with_default(2, shape=[])
      captured_inp1 = array_ops.placeholder_with_default(1, shape=[])
      inp = array_ops.placeholder(dtype=dtypes.int32, shape=[1])

      @function.Defun(dtypes.int32)
      def computation(inp):
        return inp + captured_inp0 - captured_inp1

      result = gen_batch_ops.batch_function(
          num_batch_threads=1,
          max_batch_size=10,
          batch_timeout_micros=100000,  # 100ms
          allowed_batch_sizes=[3, 10],
          batching_queue="",
          f=computation,
          in_tensors=[inp],
          captured_tensors=computation.captured_inputs,
          Tout=[o.type for o in computation.definition.signature.output_arg])

      thread_results = []

      def worker():
        thread_results.extend(sess.run([result], feed_dict={inp: [1]}))

      worker_thread = threading.Thread(target=worker)
      worker_thread.start()
      main_results = sess.run([result], feed_dict={inp: [2]})
      worker_thread.join()
      self.assertEqual(thread_results[0], [2])
      self.assertEqual(main_results[0], [3])
开发者ID:AnishShah,项目名称:tensorflow,代码行数:33,代码来源:batch_ops_test.py

示例2: test_bad_reshape_size

  def test_bad_reshape_size(self):
    dims = 2
    new_batch_shape = [2, 3]
    old_batch_shape = [2]   # 2 != 2*3

    new_batch_shape_ph = (
        constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape
        else array_ops.placeholder_with_default(
            np.int32(new_batch_shape), shape=None))

    scale = np.ones(old_batch_shape + [dims], self.dtype)
    scale_ph = array_ops.placeholder_with_default(
        scale, shape=scale.shape if self.is_static_shape else None)
    mvn = mvn_lib.MultivariateNormalDiag(scale_diag=scale_ph)

    if self.is_static_shape:
      with self.assertRaisesRegexp(
          ValueError, (r"`batch_shape` size \(6\) must match "
                       r"`distribution\.batch_shape` size \(2\)")):
        batch_reshape_lib.BatchReshape(
            distribution=mvn,
            batch_shape=new_batch_shape_ph,
            validate_args=True)

    else:
      with self.test_session():
        with self.assertRaisesOpError(r"Shape sizes do not match."):
          batch_reshape_lib.BatchReshape(
              distribution=mvn,
              batch_shape=new_batch_shape_ph,
              validate_args=True).sample().eval()
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:31,代码来源:batch_reshape_test.py

示例3: testError

  def testError(self,
                descr,
                mode,
                data,
                repeats,
                axis,
                exception=ValueError,
                error=None):
    # Make sure that this is also an error case for numpy.
    with self.assertRaises(exception):
      np.repeat(data, repeats, axis)

    if mode == 'constant':
      data = constant_op.constant(data)
      repeats = constant_op.constant(repeats)
    elif mode == 'dynamic':
      data = constant_op.constant(data)
      repeats = constant_op.constant(repeats)
      data = array_ops.placeholder_with_default(data, data.shape)
      repeats = array_ops.placeholder_with_default(repeats, repeats.shape)
    elif mode == 'unknown_shape':
      data = array_ops.placeholder_with_default(data, None)
      repeats = array_ops.placeholder_with_default(repeats, None)

    with self.assertRaisesRegexp(exception, error):
      ragged_util.repeat(data, repeats, axis)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:26,代码来源:ragged_util_test.py

示例4: test_non_positive_shape

  def test_non_positive_shape(self):
    dims = 2
    old_batch_shape = [4]
    if self.is_static_shape:
      # Unknown first dimension does not trigger size check. Note that
      # any dimension < 0 is treated statically as unknown.
      new_batch_shape = [-1, 0]
    else:
      new_batch_shape = [-2, -2]  # -2 * -2 = 4, same size as the old shape.

    new_batch_shape_ph = (
        constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape
        else array_ops.placeholder_with_default(
            np.int32(new_batch_shape), shape=None))

    scale = np.ones(old_batch_shape + [dims], self.dtype)
    scale_ph = array_ops.placeholder_with_default(
        scale, shape=scale.shape if self.is_static_shape else None)
    mvn = mvn_lib.MultivariateNormalDiag(scale_diag=scale_ph)

    if self.is_static_shape:
      with self.assertRaisesRegexp(ValueError, r".*must be >=-1.*"):
        batch_reshape_lib.BatchReshape(
            distribution=mvn,
            batch_shape=new_batch_shape_ph,
            validate_args=True)

    else:
      with self.test_session():
        with self.assertRaisesOpError(r".*must be >=-1.*"):
          batch_reshape_lib.BatchReshape(
              distribution=mvn,
              batch_shape=new_batch_shape_ph,
              validate_args=True).sample().eval()
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:34,代码来源:batch_reshape_test.py

示例5: test_non_vector_shape

  def test_non_vector_shape(self):
    dims = 2
    new_batch_shape = 2
    old_batch_shape = [2]

    new_batch_shape_ph = (
        constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape
        else array_ops.placeholder_with_default(
            np.int32(new_batch_shape), shape=None))

    scale = np.ones(old_batch_shape + [dims], self.dtype)
    scale_ph = array_ops.placeholder_with_default(
        scale, shape=scale.shape if self.is_static_shape else None)
    mvn = mvn_lib.MultivariateNormalDiag(scale_diag=scale_ph)

    if self.is_static_shape:
      with self.assertRaisesRegexp(ValueError, r".*must be a vector.*"):
        batch_reshape_lib.BatchReshape(
            distribution=mvn,
            batch_shape=new_batch_shape_ph,
            validate_args=True)

    else:
      with self.test_session():
        with self.assertRaisesOpError(r".*must be a vector.*"):
          batch_reshape_lib.BatchReshape(
              distribution=mvn,
              batch_shape=new_batch_shape_ph,
              validate_args=True).sample().eval()
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:29,代码来源:batch_reshape_test.py

示例6: test_broadcasting_explicitly_unsupported

  def test_broadcasting_explicitly_unsupported(self):
    old_batch_shape = [4]
    new_batch_shape = [1, 4, 1]
    rate_ = self.dtype([1, 10, 2, 20])

    rate = array_ops.placeholder_with_default(
        rate_,
        shape=old_batch_shape if self.is_static_shape else None)
    poisson_4 = poisson_lib.Poisson(rate)
    new_batch_shape_ph = (
        constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape
        else array_ops.placeholder_with_default(
            np.int32(new_batch_shape), shape=None))
    poisson_141_reshaped = batch_reshape_lib.BatchReshape(
        poisson_4, new_batch_shape_ph, validate_args=True)

    x_4 = self.dtype([2, 12, 3, 23])
    x_114 = self.dtype([2, 12, 3, 23]).reshape(1, 1, 4)

    if self.is_static_shape:
      with self.assertRaisesRegexp(NotImplementedError,
                                   "too few batch and event dims"):
        poisson_141_reshaped.log_prob(x_4)
      with self.assertRaisesRegexp(NotImplementedError,
                                   "unexpected batch and event shape"):
        poisson_141_reshaped.log_prob(x_114)
      return

    with self.assertRaisesOpError("too few batch and event dims"):
      with self.test_session():
        poisson_141_reshaped.log_prob(x_4).eval()

    with self.assertRaisesOpError("unexpected batch and event shape"):
      with self.test_session():
        poisson_141_reshaped.log_prob(x_114).eval()
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:35,代码来源:batch_reshape_test.py

示例7: testBatchDecoratedWithCapturedInput

  def testBatchDecoratedWithCapturedInput(self):
    """Tests that the batch_function decorator works."""
    if context.executing_eagerly():
      return
    with self.cached_session() as sess:
      captured_inp0 = array_ops.placeholder_with_default(2, shape=[])
      captured_inp1 = array_ops.placeholder_with_default(1, shape=[])

      @batch_ops.batch_function(1, 10, 100000)
      def computation(in_t):
        return in_t + captured_inp0 - captured_inp1

      inp = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
      result = computation(inp)
      thread_results = []

      def worker():
        thread_results.extend(sess.run([result], feed_dict={inp: [1]}))

      worker_thread = threading.Thread(target=worker)
      worker_thread.start()
      main_results = sess.run([result], feed_dict={inp: [2]})
      worker_thread.join()
      self.assertEqual(thread_results[0], [2])
      self.assertEqual(main_results[0], [3])
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:25,代码来源:batch_ops_test.py

示例8: testCDFWithDynamicEventShapeUnknownNdims

  def testCDFWithDynamicEventShapeUnknownNdims(
      self, events, histograms, expected_cdf):
    """Test that dynamically-sized events with unknown shape work."""
    event_ph = array_ops.placeholder_with_default(events, shape=None)
    histograms_ph = array_ops.placeholder_with_default(histograms, shape=None)
    dist = categorical.Categorical(probs=histograms_ph)
    cdf_op = dist.cdf(event_ph)

    actual_cdf = self.evaluate(cdf_op)
    self.assertAllClose(actual_cdf, expected_cdf)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:10,代码来源:categorical_test.py

示例9: testRaggedTensorSplitsMismatchErrorAtRuntime

 def testRaggedTensorSplitsMismatchErrorAtRuntime(self):
   splits1 = array_ops.placeholder_with_default(
       constant_op.constant([0, 3, 3, 5], dtypes.int64), None)
   splits2 = array_ops.placeholder_with_default(
       constant_op.constant([0, 1, 3, 5], dtypes.int64), None)
   x = ragged_tensor.RaggedTensor.from_row_splits([3, 1, 4, 1, 5], splits1)
   y = ragged_tensor.RaggedTensor.from_row_splits([1, 2, 3, 4, 5], splits2)
   with self.assertRaisesRegexp(errors.InvalidArgumentError,
                                r'.*Inputs must have identical ragged splits'):
     self.evaluate(ragged_functional_ops.map_flat_values(math_ops.add, x, y))
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:10,代码来源:ragged_map_flat_values_op_test.py

示例10: setUp

 def setUp(self):
   super(BatchSequencesWithStatesTest, self).setUp()
   self.value_length = 4
   ind1 = np.array([
       [0, 0],
       [1, 0], [1, 3], [1, 4],
       [3, 2], [3, 3]])
   val1 = np.array([0, 10, 13, 14, 32, 33])
   shape1 = np.array([self.value_length, 6])
   sp_tensor1 = sparse_tensor.SparseTensor(
       array_ops.constant(ind1, dtypes.int64),
       array_ops.constant(val1, dtypes.int64),
       array_ops.placeholder_with_default(shape1, shape=[2]))
   ind2 = np.array([
       [0, 0, 1],
       [0, 1, 0],
       [0, 1, 2],
       [1, 0, 3],
       [1, 1, 0],
       [1, 1, 1],
       [1, 1, 2],
       [1, 2, 2]])
   val2 = np.array([1, 10, 12, 103, 150, 149, 150, 122])
   shape2 = np.array([self.value_length, 3, 4])
   sp_tensor2 = sparse_tensor.SparseTensor(
       array_ops.constant(ind2, dtypes.int64),
       array_ops.constant(val2, dtypes.int64),
       array_ops.placeholder_with_default(shape2, shape=[3]))
   sp_tensor3 = sparse_tensor.SparseTensor(
       array_ops.constant([[1, 9], [2, 2], [2, 10]], dtypes.int64),
       array_ops.constant([7, 15, 2], dtypes.int64),
       array_ops.constant([5, 12], dtypes.int64)
   )
   self.sp_tensor3_expected = sparse_tensor.SparseTensorValue(
       [[0, 1, 9], [0, 2, 2], [0, 2, 10], [1, 1, 9], [1, 2, 2], [1, 2, 10]],
       [7, 15, 2, 7, 15, 2],
       [2, 5, 12]
   )
   self.batch_size = 2
   self.key = string_ops.string_join([
       "key_", string_ops.as_string(
           math_ops.cast(10000 * random_ops.random_uniform(()), dtypes.int32))
   ])
   self.sequences = {
       "seq1": np.random.rand(self.value_length, 5),
       "seq2": np.random.rand(self.value_length, 4, 2),
       "seq3": sp_tensor1,
       "seq4": sp_tensor2}
   self.context = {
       "context1": [3, 4],
       "sp_context": sp_tensor3}
   self.initial_states = {
       "state1": np.random.rand(6, 7),
       "state2": np.random.rand(8)
   }
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:55,代码来源:batch_sequences_with_states_test.py

示例11: testDynamicShapes

 def testDynamicShapes(self):
   for dtype in [dtypes.float32, dtypes.float64]:
     default_x1 = constant_op.constant(0.1, dtype=dtype)
     default_x2 = constant_op.constant(3.1, dtype=dtype)
     x1 = array_ops.placeholder_with_default(default_x1, shape=None)
     x2 = array_ops.placeholder_with_default(default_x2, shape=None)
     dx1, dx2 = self._nextafter_gradient(x1, x2)
     expected_dx1 = constant_op.constant(1, dtype=dtype)
     expected_dx2 = constant_op.constant(0, dtype=dtype)
     self.assertAllClose(expected_dx1, dx1)
     self.assertAllClose(expected_dx2, dx2)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:11,代码来源:math_grad_test.py

示例12: testSampleProbConsistentBroadcastBoth

 def testSampleProbConsistentBroadcastBoth(self):
   with self.test_session() as sess:
     pln = poisson_lognormal.PoissonLogNormalQuadratureCompound(
         loc=array_ops.placeholder_with_default(
             [[0.], [-0.5]],
             shape=[2, 1] if self.static_shape else None),
         scale=array_ops.placeholder_with_default(
             [[1., 0.9]],
             shape=[1, 2] if self.static_shape else None),
         quadrature_size=10,
         validate_args=True)
     self.run_test_sample_consistent_log_prob(
         sess.run, pln, batch_size=4, rtol=0.1, atol=0.08)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:13,代码来源:poisson_lognormal_test.py

示例13: testMeanVarianceBroadcastScalar

 def testMeanVarianceBroadcastScalar(self):
   with self.test_session() as sess:
     pln = poisson_lognormal.PoissonLogNormalQuadratureCompound(
         loc=array_ops.placeholder_with_default(
             [0., -0.5],
             shape=[2] if self.static_shape else None),
         scale=array_ops.placeholder_with_default(
             1.,
             shape=[] if self.static_shape else None),
         quadrature_size=10,
         validate_args=True)
     self.run_test_sample_consistent_mean_variance(
         sess.run, pln, rtol=0.1, atol=0.01)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:13,代码来源:poisson_lognormal_test.py

示例14: testRaggedTensorSplitsMismatchErrorAtRuntime

 def testRaggedTensorSplitsMismatchErrorAtRuntime(self):
   splits1 = array_ops.placeholder_with_default(
       constant_op.constant([0, 3, 3, 5], dtypes.int64), None)
   splits2 = array_ops.placeholder_with_default(
       constant_op.constant([0, 1, 3, 5], dtypes.int64), None)
   x = ragged.from_row_splits([3, 1, 4, 1, 5], splits1)
   y = ragged.from_row_splits([1, 2, 3, 4, 5], splits2)
   result = ragged.map_inner_values(math_ops.add, x, y)
   with self.test_session():
     self.assertRaisesRegexp(
         errors.InvalidArgumentError,
         r'\[Inputs must have identical ragged splits\] '
         r'\[Condition x == y did not hold element-wise:\].*', result.eval)
开发者ID:aeverall,项目名称:tensorflow,代码行数:13,代码来源:ragged_map_inner_values_op_test.py

示例15: testSampleProbConsistent

 def testSampleProbConsistent(self):
   with self.test_session() as sess:
     pln = poisson_lognormal.PoissonLogNormalQuadratureCompound(
         loc=array_ops.placeholder_with_default(
             -2.,
             shape=[] if self.static_shape else None),
         scale=array_ops.placeholder_with_default(
             1.1,
             shape=[] if self.static_shape else None),
         quadrature_size=10,
         validate_args=True)
     self.run_test_sample_consistent_log_prob(
         sess.run, pln, batch_size=1, rtol=0.1)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:13,代码来源:poisson_lognormal_test.py


注:本文中的tensorflow.python.ops.array_ops.placeholder_with_default函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。