当前位置: 首页>>代码示例>>Python>>正文


Python array_ops.gather函数代码示例

本文整理汇总了Python中tensorflow.python.ops.array_ops.gather函数的典型用法代码示例。如果您正苦于以下问题:Python gather函数的具体用法?Python gather怎么用?Python gather使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了gather函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _apply_sparse_shared

  def _apply_sparse_shared(self,
                           grad,
                           var,
                           indices,
                           scatter_update,
                           scatter_sub):
    beta1_power, beta2_power = self._get_beta_accumulators()
    beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype)
    beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype)
    lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
    beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
    beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
    epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype)
    lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power))

    # \\(m := beta1 * m + (1 - beta1) * g_t\\)
    m = self.get_slot(var, "m")
    m_t = scatter_update(m, indices,
                         beta1_t * array_ops.gather(m, indices) +
                         (1 - beta1_t) * grad)

    # \\(v := beta2 * v + (1 - beta2) * (g_t * g_t)\\)
    v = self.get_slot(var, "v")
    v_t = scatter_update(v, indices,
                         beta2_t * array_ops.gather(v, indices) +
                         (1 - beta2_t) * math_ops.square(grad))

    # \\(variable -= learning_rate * m_t / (epsilon_t + sqrt(v_t))\\)
    m_t_slice = array_ops.gather(m_t, indices)
    v_t_slice = array_ops.gather(v_t, indices)
    denominator_slice = math_ops.sqrt(v_t_slice) + epsilon_t
    var_update = scatter_sub(var, indices,
                             lr * m_t_slice / denominator_slice)
    return control_flow_ops.group(var_update, m_t, v_t)
开发者ID:clsung,项目名称:tensorflow,代码行数:34,代码来源:lazy_adam_optimizer.py

示例2: quantiles_ready

  def quantiles_ready():
    """The subgraph for when the quantiles are ready."""
    quantized_feature = quantile_ops.quantiles([sparse_column_values], [],
                                               [quantile_buckets], [])
    quantized_feature = math_ops.cast(quantized_feature[0], dtypes.int64)
    quantized_feature = array_ops.reshape(quantized_feature, [-1])
    example_indices, _ = array_ops.split(
        sparse_column_indices, num_or_size_splits=2, axis=1)
    example_indices = array_ops.squeeze(example_indices, [1])
    filtered_gradients = array_ops.gather(gradients, example_indices)
    filtered_hessians = array_ops.gather(hessians, example_indices)
    filtered_partition_ids = array_ops.gather(example_partition_ids,
                                              example_indices)
    unique_partitions, mapped_partitions = array_ops.unique(
        example_partition_ids)

    # Compute aggregate stats for each partition.
    per_partition_gradients = math_ops.unsorted_segment_sum(
        gradients, mapped_partitions, array_ops.size(unique_partitions))
    per_partition_hessians = math_ops.unsorted_segment_sum(
        hessians, mapped_partitions, array_ops.size(unique_partitions))

    # Prepend a bias feature per partition that accumulates the stats for all
    # examples in that partition.
    bias_feature_ids = array_ops.fill(
        array_ops.shape(unique_partitions), _BIAS_FEATURE_ID)
    bias_feature_ids = math_ops.cast(bias_feature_ids, dtypes.int64)
    partition_ids = array_ops.concat(
        [unique_partitions, filtered_partition_ids], 0)
    filtered_gradients = array_ops.concat(
        [per_partition_gradients, filtered_gradients], 0)
    filtered_hessians = array_ops.concat(
        [per_partition_hessians, filtered_hessians], 0)
    bucket_ids = array_ops.concat([bias_feature_ids, quantized_feature], 0)
    return partition_ids, bucket_ids, filtered_gradients, filtered_hessians
开发者ID:1000sprites,项目名称:tensorflow,代码行数:35,代码来源:ordinal_split_handler.py

示例3: _check_shapes_dynamic

  def _check_shapes_dynamic(self, operator, v, diag):
    """Return (v, diag) with Assert dependencies, which check shape."""
    checks = []
    with ops.op_scope([operator, v, diag], 'check_shapes'):
      s_v = array_ops.shape(v)
      r_op = operator.rank()
      r_v = array_ops.rank(v)
      if diag is not None:
        s_d = array_ops.shape(diag)
        r_d = array_ops.rank(diag)

      # Check tensor rank.
      checks.append(check_ops.assert_rank(v, r_op))
      if diag is not None:
        checks.append(check_ops.assert_rank(diag, r_op - 1))

      # Check batch shape
      checks.append(check_ops.assert_equal(
          operator.batch_shape(), array_ops.slice(s_v, [0], [r_v - 2])))
      if diag is not None:
        checks.append(check_ops.assert_equal(
            operator.batch_shape(), array_ops.slice(s_d, [0], [r_d - 1])))

      # Check event shape
      checks.append(check_ops.assert_equal(
          operator.vector_space_dimension(), array_ops.gather(s_v, r_v - 2)))
      if diag is not None:
        checks.append(check_ops.assert_equal(
            array_ops.gather(s_v, r_v - 1), array_ops.gather(s_d, r_d - 1)))

      v = control_flow_ops.with_dependencies(checks, v)
      if diag is not None:
        diag = control_flow_ops.with_dependencies(checks, diag)
      return v, diag
开发者ID:10imaging,项目名称:tensorflow,代码行数:34,代码来源:operator_pd_vdvt_update.py

示例4: _apply_sparse

  def _apply_sparse(self, grad, var):
    beta1_power, beta2_power = self._get_beta_accumulators()
    beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype)
    beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype)
    lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
    beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
    beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
    epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype)
    lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power))

    # m := beta1 * m + (1 - beta1) * g_t
    m = self.get_slot(var, "m")
    m_t = state_ops.scatter_update(m, grad.indices,
                                   beta1_t * array_ops.gather(m, grad.indices) +
                                   (1 - beta1_t) * grad.values,
                                   use_locking=self._use_locking)

    # v := beta2 * v + (1 - beta2) * (g_t * g_t)
    v = self.get_slot(var, "v")
    v_t = state_ops.scatter_update(v, grad.indices,
                                   beta2_t * array_ops.gather(v, grad.indices) +
                                   (1 - beta2_t) * math_ops.square(grad.values),
                                   use_locking=self._use_locking)

    # variable -= learning_rate * m_t / (epsilon_t + sqrt(v_t))
    m_t_slice = array_ops.gather(m_t, grad.indices)
    v_t_slice = array_ops.gather(v_t, grad.indices)
    denominator_slice = math_ops.sqrt(v_t_slice) + epsilon_t
    var_update = state_ops.scatter_sub(var, grad.indices,
                                       lr * m_t_slice / denominator_slice,
                                       use_locking=self._use_locking)
    return control_flow_ops.group(var_update, m_t, v_t)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:32,代码来源:lazy_adam_optimizer.py

示例5: _apply_sparse_shared

 def _apply_sparse_shared(self, grad, var, indices,
                          scatter_add, scatter_update):
   beta1_power = self._get_beta_accumulators()
   beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype)
   lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
   beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
   beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
   epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype)
   # m_t = beta1 * m + (1 - beta1) * g_t
   m = self.get_slot(var, "m")
   m_slice = array_ops.gather(m, indices)
   m_t_slice = m_slice * beta1_t + grad * (1 - beta1_t)
   with ops.control_dependencies([m_t_slice]):
     m_t = scatter_update(m, indices, m_t_slice)
   # u_t = max(beta2 * u, abs(g_t))
   v = self.get_slot(var, "v")
   v_slice = array_ops.gather(v, indices)
   v_t_slice = math_ops.maximum(v_slice * beta2_t, math_ops.abs(grad))
   with ops.control_dependencies([v_t_slice]):
     v_t = scatter_update(v, indices, v_t_slice)
   # theta_t = theta - lr / (1 - beta1^t) * m_t / u_t
   var_slice = -lr_t / (1 - beta1_power) * (m_t_slice /
                                            (v_t_slice + epsilon_t))
   with ops.control_dependencies([var_slice]):
     var_update = scatter_add(var, indices, var_slice)
   return control_flow_ops.group(*[var_update, m_t, v_t])
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:26,代码来源:adamax.py

示例6: _apply_sparse

 def _apply_sparse(self, g_t, x_tm1, prepare):
   """"""
   
   idxs, idxs_ = array_ops.unique(g_t.indices)
   g_t_ = math_ops.unsorted_segment_sum(g_t.values, idxs_, array_ops.size(idxs))
   updates = []
   
   if self._mu > 0:
     m_and_t = self._sparse_moving_average(x_tm1, idxs, g_t_, 'm', self._mu)
     m_t_ = array_ops.gather(m_and_t[0], idxs)
     gamma_t = ops.convert_to_tensor(self._gamma)
     m_bar_t_ = (1-gamma_t)*m_t_ + gamma_t*g_t_
     updates.extend(m_and_t)
   else:
     m_bar_t_ = g_t_
   
   if self._ups > 0:
     v_and_t = self._sparse_moving_average(x_tm1, idxs, g_t_**2, 'v', self._ups)
     v_t_ = array_ops.gather(v_and_t[0], idxs)
     eps_t = ops.convert_to_tensor(self._eps)
     v_bar_t_ = math_ops.sqrt(v_t_ + eps_t)
     updates.extend(v_and_t)
   else:
     v_bar_t_ = 1.
   
   lr_t = ops.convert_to_tensor(self._lr)
   s_t_ = lr_t * m_bar_t_ / v_bar_t_
   return [[s_t_, x_tm1, idxs, g_t]] + updates
开发者ID:tdozat,项目名称:Optimization,代码行数:28,代码来源:optimizers.py

示例7: _resource_apply_sparse

  def _resource_apply_sparse(self, grad, var, indices):
    var_dtype = var.dtype.base_dtype
    lr_t = self._decayed_lr(var_dtype)

    beta_1_t = self._get_hyper('beta_1', var_dtype)
    beta_2_t = self._get_hyper('beta_2', var_dtype)
    local_step = math_ops.cast(self.iterations + 1, var_dtype)
    beta_1_power = math_ops.pow(beta_1_t, local_step)
    epsilon_t = self._get_hyper('epsilon', var_dtype)

    # m_t = beta1 * m + (1 - beta1) * g_t
    m = self.get_slot(var, 'm')
    m_slice = array_ops.gather(m, indices)
    m_t_slice = m_slice * beta_1_t + grad * (1 - beta_1_t)
    with ops.control_dependencies([m_t_slice]):
      m_t = self._resource_scatter_update(m, indices, m_t_slice)

    # u_t = max(beta2 * u, abs(g_t))
    v = self.get_slot(var, 'v')
    v_slice = array_ops.gather(v, indices)
    v_t_slice = math_ops.maximum(v_slice * beta_2_t, math_ops.abs(grad))
    with ops.control_dependencies([v_t_slice]):
      v_t = self._resource_scatter_update(v, indices, v_t_slice)
    # theta_t = theta - lr / (1 - beta1^t) * m_t / u_t
    var_slice = -lr_t / (1 - beta_1_power) * (
        m_t_slice / (v_t_slice + epsilon_t))
    with ops.control_dependencies([var_slice]):
      var_update = self._resource_scatter_add(var, indices, var_slice)
    return control_flow_ops.group(*[var_update, m_t, v_t])
开发者ID:aeverall,项目名称:tensorflow,代码行数:29,代码来源:adamax.py

示例8: _sparse_moving_average

 def _sparse_moving_average(self, x_tm1, idxs, b_t_, name, beta=.9):
   """
   Creates a moving average for a sparse variable.
   Inputs:
     x_tm1: the associated parameter (e.g. a weight matrix)
     idxs: the tensor representing the indices used
     b_t_: the value to accumulate (e.g. slices of the gradient)
     name: a string to use to retrieve it later (e.g. 'm')
     beta: the decay factor (defaults to .9)
   Outputs:
     a_t: the average after moving (same shape as x_tm1, not b_t_)
     t: the internal timestep (used to correct initialization bias)
   """
   
   a_tm1 = self._zeros_slot(x_tm1, '%s' % name, self._name)
   a_tm1_ = array_ops.gather(a_tm1, idxs)
   tm1 = self._zeros_idx_slot(x_tm1, '%s/tm1' % name, self._name)
   tm1_ = array_ops.gather(tm1, idxs)
   t = state_ops.scatter_add(tm1, idxs, tm1_*0+1, use_locking=self._use_locking)
   t_ = array_ops.gather(t, idxs)
   if beta < 1:
     beta_t = ops.convert_to_tensor(beta, name='%s/decay' % name)
     beta_t_ = beta_t * (1-beta_t**tm1_) / (1-beta_t**t_)
   else:
     beta_t_ = tm1_/t_
   a_t = state_ops.scatter_update(a_tm1, idxs, beta_t_*a_tm1_, use_locking=self._use_locking)
   a_t = state_ops.scatter_add(a_t, idxs, (1-beta_t)*b_t_, use_locking=self._use_locking)
   return a_t, t
开发者ID:tdozat,项目名称:Optimization,代码行数:28,代码来源:optimizers.py

示例9: _prepare

 def _prepare(self, grads_and_vars):
   """"""
   
   if self._lr is None:
     sTy = 0
     sTs = 0
     yTy = 0
     for g_t, x_tm1 in grads_and_vars:
       if g_t is None:
         continue
       with ops.name_scope('update_' + x_tm1.op.name), ops.device(x_tm1.device):
         if isinstance(g_t, ops.Tensor):
           g_tm1 = self.get_slot(x_tm1, 'g')
           s_tm1 = self.get_slot(x_tm1, 's')
           y_t = (g_t-g_tm1)
           sTy += math_ops.reduce_sum(s_tm1*y_t)
           sTs += math_ops.reduce_sum(s_tm1**2)
           yTy += math_ops.reduce_sum(y_t**2)
         else:
           idxs, idxs_ = array_ops.unique(g_t.indices)
           g_t_ = math_ops.unsorted_segment_sum(g_t.values, idxs_, array_ops.size(idxs))
           g_tm1 = self.get_slot(x_tm1, 'g')
           g_tm1_ = array_ops.gather(g_tm1, idxs)
           s_tm1 = self.get_slot(x_tm1, 's')
           s_tm1_ = array_ops.gather(s_tm1, idxs)
           y_t_ = (g_t_-g_tm1_)
           sTy += math_ops.reduce_sum(s_tm1_*y_t_)
           sTs += math_ops.reduce_sum(s_tm1_**2)
           yTy += math_ops.reduce_sum(y_t_**2)
     sTy = math_ops.abs(sTy)
     self._lr = sTs / (sTy + self._eps)
开发者ID:tdozat,项目名称:Optimization,代码行数:31,代码来源:optimizers.py

示例10: _resource_apply_sparse

  def _resource_apply_sparse(self, grad, var, indices):
    beta1_power, beta2_power = self._get_beta_accumulators()
    beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype)
    beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype)
    lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
    beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
    beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
    epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype)
    lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power))

    # \\(m := beta1 * m + (1 - beta1) * g_t\\)
    m = self.get_slot(var, "m")
    m_t_slice = beta1_t * array_ops.gather(m, indices) + (1 - beta1_t) * grad
    m_update_op = resource_variable_ops.resource_scatter_update(m.handle,
                                                                indices,
                                                                m_t_slice)

    # \\(v := beta2 * v + (1 - beta2) * (g_t * g_t)\\)
    v = self.get_slot(var, "v")
    v_t_slice = (beta2_t * array_ops.gather(v, indices) +
                 (1 - beta2_t) * math_ops.square(grad))
    v_update_op = resource_variable_ops.resource_scatter_update(v.handle,
                                                                indices,
                                                                v_t_slice)

    # \\(variable -= learning_rate * m_t / (epsilon_t + sqrt(v_t))\\)
    var_slice = lr * m_t_slice / (math_ops.sqrt(v_t_slice) + epsilon_t)
    var_update_op = resource_variable_ops.resource_scatter_sub(var.handle,
                                                               indices,
                                                               var_slice)

    return control_flow_ops.group(var_update_op, m_update_op, v_update_op)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:32,代码来源:lazy_adam_optimizer.py

示例11: _resource_apply_sparse

  def _resource_apply_sparse(self, grad, var, indices):
    var_dtype = var.dtype.base_dtype
    lr_t = self._decayed_lr(var_dtype)
    beta_1_t = self._get_hyper('beta_1', var_dtype)
    beta_2_t = self._get_hyper('beta_2', var_dtype)
    local_step = math_ops.cast(self.iterations + 1, var_dtype)
    beta_1_power = math_ops.pow(beta_1_t, local_step)
    beta_2_power = math_ops.pow(beta_2_t, local_step)
    epsilon_t = self._get_hyper('epsilon', var_dtype)
    lr = (lr_t * math_ops.sqrt(1 - beta_2_power) / (1 - beta_1_power))

    # m_t = beta1 * m + (1 - beta1) * g_t
    m = self.get_slot(var, 'm')
    m_scaled_g_values = grad * (1 - beta_1_t)
    m_t = state_ops.assign(m, m * beta_1_t, use_locking=self._use_locking)
    with ops.control_dependencies([m_t]):
      m_t = self._resource_scatter_add(m, indices, m_scaled_g_values)
      # m_bar = (1 - beta1) * g_t + beta1 * m_t
      m_bar = m_scaled_g_values + beta_1_t * array_ops.gather(m_t, indices)

    # v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
    v = self.get_slot(var, 'v')
    v_scaled_g_values = (grad * grad) * (1 - beta_2_t)
    v_t = state_ops.assign(v, v * beta_2_t, use_locking=self._use_locking)
    with ops.control_dependencies([v_t]):
      v_t = self._resource_scatter_add(v, indices, v_scaled_g_values)

    v_t_slice = array_ops.gather(v_t, indices)
    v_sqrt = math_ops.sqrt(v_t_slice)
    var_update = self._resource_scatter_add(var, indices,
                                            -lr * m_bar / (v_sqrt + epsilon_t))
    return control_flow_ops.group(*[var_update, m_bar, v_t])
开发者ID:aeverall,项目名称:tensorflow,代码行数:32,代码来源:nadam.py

示例12: testHigherRankMaxNorm

 def testHigherRankMaxNorm(self):
   np.random.seed(8)
   with self.cached_session():
     for params_shape in (12,), (6, 3), (6, 2, 3):
       # Test embedding rank 0, 1, 2.
       # Note: the first dimension must be a common multiple of procs below.
       params = 2 * np.ones(params_shape)
       params_norm = params / np.sqrt(
           np.sum(
               params * params, tuple(range(params.ndim)[1:]), keepdims=True))
       for ids_shape in (), (3), (4, 3), (2, 3, 4):
         ids = np.random.randint(
             params.shape[0], size=np.prod(ids_shape,
                                           dtype=np.int64)).reshape(ids_shape)
         # Compare nonsharded to gather
         simple = embedding_ops.embedding_lookup(
             params, ids, max_norm=1.0).eval()
         # assertAllClose is used here as different implementations of sqrt may
         # be used to compute each of the values being compared.  For example,
         # on AVX512 builds the embedding operation makes use of Eigen's fast
         # vectorized square root algorithm for doubles.  These different
         # implementations of sqrt are not guaranteed to produce exactly the
         # same results. Therefore, an exact comparison cannot be made.
         self.assertAllClose(simple, array_ops.gather(params_norm, ids).eval())
         # Run a few different sharded versions.
         for procs in 1, 2, 3:
           stride = procs * math_ops.range(params.shape[0] // procs)
           split_params = [
               array_ops.gather(params, stride + p) for p in xrange(procs)
           ]
           sharded = embedding_ops.embedding_lookup(
               split_params, ids, max_norm=1.0).eval()
           self.assertAllEqual(simple, sharded)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:33,代码来源:embedding_ops_test.py

示例13: _apply_sparse

    def _apply_sparse(self, grad, var):
        lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
        beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
        beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
        epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype)

        # the following equations given in [1]
        # m_t = beta1 * m + (1 - beta1) * g_t
        m = self.get_slot(var, "m")
        m_t = state_ops.scatter_update(m, grad.indices,
                                       beta1_t * array_ops.gather(m, grad.indices) +
                                       (1. - beta1_t) * grad.values,
                                       use_locking=self._use_locking)
        m_t_slice = tf.gather(m_t, grad.indices)

        # v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
        v = self.get_slot(var, "v")
        v_t = state_ops.scatter_update(v, grad.indices,
                                       beta2_t * array_ops.gather(v, grad.indices) +
                                       (1. - beta2_t) * tf.square(grad.values),
                                       use_locking=self._use_locking)
        v_prime = self.get_slot(var, "v_prime")
        v_t_slice = tf.gather(v_t, grad.indices)
        v_prime_slice = tf.gather(v_prime, grad.indices)
        v_t_prime = state_ops.scatter_update(v_prime, grad.indices, tf.maximum(v_prime_slice, v_t_slice))

        v_t_prime_slice = array_ops.gather(v_t_prime, grad.indices)
        var_update = state_ops.scatter_sub(var, grad.indices,
                                           lr_t * m_t_slice / (math_ops.sqrt(v_t_prime_slice) + epsilon_t),
                                           use_locking=self._use_locking)

        return control_flow_ops.group(*[var_update, m_t, v_t, v_t_prime])
开发者ID:jkhlot,项目名称:tensorflow-XNN,代码行数:32,代码来源:optimizer.py

示例14: _apply_sparse_shared

 def _apply_sparse_shared(self, grad, var, indices, scatter_add):
   beta1_power, beta2_power = self._get_beta_accumulators()
   beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype)
   beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype)
   lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
   beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
   beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
   epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype)
   lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power))
   # m_t = beta1 * m + (1 - beta1) * g_t
   m = self.get_slot(var, "m")
   m_scaled_g_values = grad * (1 - beta1_t)
   m_t = state_ops.assign(m, m * beta1_t, use_locking=self._use_locking)
   with ops.control_dependencies([m_t]):
     m_t = scatter_add(m, indices, m_scaled_g_values)
     # m_bar = (1 - beta1) * g_t + beta1 * m_t
     m_bar = m_scaled_g_values + beta1_t * array_ops.gather(m_t, indices)
   # v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
   v = self.get_slot(var, "v")
   v_scaled_g_values = (grad * grad) * (1 - beta2_t)
   v_t = state_ops.assign(v, v * beta2_t, use_locking=self._use_locking)
   with ops.control_dependencies([v_t]):
     v_t = scatter_add(v, indices, v_scaled_g_values)
   v_t_slice = array_ops.gather(v_t, indices)
   v_sqrt = math_ops.sqrt(v_t_slice)
   var_update = scatter_add(var, indices, -lr * m_bar / (v_sqrt + epsilon_t))
   return control_flow_ops.group(*[var_update, m_bar, v_t])
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:27,代码来源:nadam_optimizer.py

示例15: testString

 def testString(self):
   params = np.array([[b"asdf", b"zxcv"], [b"qwer", b"uiop"]])
   with self.cached_session():
     self.assertAllEqual([b"qwer", b"uiop"],
                         array_ops.gather(params, 1, axis=0).eval())
     self.assertAllEqual([b"asdf", b"qwer"],
                         array_ops.gather(params, 0, axis=1).eval())
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:7,代码来源:gather_op_test.py


注:本文中的tensorflow.python.ops.array_ops.gather函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。