本文整理汇总了Python中tensorflow.python.ops.array_ops.expand_dims函数的典型用法代码示例。如果您正苦于以下问题:Python expand_dims函数的具体用法?Python expand_dims怎么用?Python expand_dims使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了expand_dims函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _mask_probs
def _mask_probs(probs, eos_token, finished):
"""Masks log probabilities.
The result is that finished beams allocate all probability mass to eos and
unfinished beams remain unchanged.
Args:
probs: Log probabiltiies of shape `[batch_size, beam_width, vocab_size]`
eos_token: An int32 id corresponding to the EOS token to allocate
probability to.
finished: A boolean tensor of shape `[batch_size, beam_width]` that
specifies which elements in the beam are finished already.
Returns:
A tensor of shape `[batch_size, beam_width, vocab_size]`, where unfinished
beams stay unchanged and finished beams are replaced with a tensor with all
probability on the EOS token.
"""
vocab_size = array_ops.shape(probs)[2]
finished_mask = math_ops.cast(array_ops.expand_dims(finished, 2), probs.dtype)
not_finished_mask = math_ops.cast(
array_ops.expand_dims(math_ops.logical_not(finished), 2),
probs.dtype)
# These examples are not finished and we leave them
non_finished_examples = not_finished_mask * probs
# All finished examples are replaced with a vector that has all
# probability on EOS
finished_row = array_ops.one_hot(
eos_token,
vocab_size,
dtype=probs.dtype,
on_value=0.,
off_value=probs.dtype.min)
finished_examples = finished_mask * finished_row
return finished_examples + non_finished_examples
示例2: frames
def frames(signal, frame_length, frame_step, name=None):
"""Frame a signal into overlapping frames.
May be used in front of spectral functions.
For example:
```python
pcm = tf.placeholder(tf.float32, [None, 9152])
frames = tf.contrib.signal.frames(pcm, 512, 180)
magspec = tf.abs(tf.spectral.rfft(frames, [512]))
image = tf.expand_dims(magspec, 3)
```
Args:
signal: A `Tensor` of shape `[batch_size, signal_length]`.
frame_length: An `int32` or `int64` `Tensor`. The length of each frame.
frame_step: An `int32` or `int64` `Tensor`. The step between frames.
name: A name for the operation (optional).
Returns:
A `Tensor` of frames with shape `[batch_size, num_frames, frame_length]`.
Raises:
ValueError: if signal does not have rank 2.
"""
with ops.name_scope(name, "frames", [signal, frame_length, frame_step]):
signal = ops.convert_to_tensor(signal, name="signal")
frame_length = ops.convert_to_tensor(frame_length, name="frame_length")
frame_step = ops.convert_to_tensor(frame_step, name="frame_step")
signal_rank = signal.shape.ndims
if signal_rank != 2:
raise ValueError("expected signal to have rank 2 but was " + signal_rank)
signal_length = array_ops.shape(signal)[1]
num_frames = math_ops.ceil((signal_length - frame_length) / frame_step)
num_frames = 1 + math_ops.cast(num_frames, dtypes.int32)
pad_length = (num_frames - 1) * frame_step + frame_length
pad_signal = array_ops.pad(signal, [[0, 0], [0,
pad_length - signal_length]])
indices_frame = array_ops.expand_dims(math_ops.range(frame_length), 0)
indices_frames = array_ops.tile(indices_frame, [num_frames, 1])
indices_step = array_ops.expand_dims(
math_ops.range(num_frames) * frame_step, 1)
indices_steps = array_ops.tile(indices_step, [1, frame_length])
indices = indices_frames + indices_steps
# TODO(androbin): remove `transpose` when `gather` gets `axis` support
pad_signal = array_ops.transpose(pad_signal)
signal_frames = array_ops.gather(pad_signal, indices)
signal_frames = array_ops.transpose(signal_frames, perm=[2, 0, 1])
return signal_frames
示例3: call
def call(self, inputs):
# There is no TF op for 1D pooling, hence we make the inputs 4D.
if self.data_format == 'channels_last':
# input is NWC, make it NHWC
inputs = array_ops.expand_dims(inputs, 1)
# pool on the W dim
pool_shape = (1, 1) + self.pool_size + (1,)
strides = (1, 1) + self.strides + (1,)
data_format = 'NHWC'
else:
# input is NCW, make it NCHW
inputs = array_ops.expand_dims(inputs, 2)
# pool on the W dim
pool_shape = (1, 1, 1) + self.pool_size
strides = (1, 1, 1) + self.strides
data_format = 'NCHW'
outputs = self.pool_function(
inputs,
ksize=pool_shape,
strides=strides,
padding=self.padding.upper(),
data_format=data_format)
if self.data_format == 'channels_last':
return array_ops.squeeze(outputs, 1)
else:
return array_ops.squeeze(outputs, 2)
示例4: center_bias
def center_bias(self, center_bias_var, gradients, hessians):
# For in memory, we already have a full batch of gradients and hessians,
# so just take a mean and proceed with centering.
mean_gradients = array_ops.expand_dims(
math_ops.reduce_mean(gradients, 0), 0)
mean_heassians = array_ops.expand_dims(math_ops.reduce_mean(hessians, 0), 0)
return self._center_bias_fn(center_bias_var, mean_gradients, mean_heassians)
示例5: _operator_and_mat_and_feed_dict
def _operator_and_mat_and_feed_dict(self, shape, dtype, use_placeholder):
shape = list(shape)
assert shape[-1] == shape[-2]
batch_shape = shape[:-2]
num_rows = shape[-1]
# Uniform values that are at least length 1 from the origin. Allows the
# operator to be well conditioned.
# Shape batch_shape
multiplier = linear_operator_test_util.random_sign_uniform(
shape=batch_shape, minval=1., maxval=2., dtype=dtype)
operator = linalg_lib.LinearOperatorScaledIdentity(num_rows, multiplier)
# Nothing to feed since LinearOperatorScaledIdentity takes no Tensor args.
if use_placeholder:
multiplier_ph = array_ops.placeholder(dtype=dtype)
multiplier = multiplier.eval()
operator = linalg_lib.LinearOperatorScaledIdentity(
num_rows, multiplier_ph)
feed_dict = {multiplier_ph: multiplier}
else:
feed_dict = None
multiplier_matrix = array_ops.expand_dims(
array_ops.expand_dims(multiplier, -1), -1)
mat = multiplier_matrix * linalg_ops.eye(
num_rows, batch_shape=batch_shape, dtype=dtype)
return operator, mat, feed_dict
示例6: _testDrawBoundingBoxColorCycling
def _testDrawBoundingBoxColorCycling(self, img):
"""Tests if cycling works appropriately.
Args:
img: 3-D numpy image on which to draw.
"""
# THIS TABLE MUST MATCH draw_bounding_box_op.cc
color_table = np.asarray([[1, 1, 0, 1], [0, 0, 1, 1], [1, 0, 0, 1],
[0, 1, 0, 1], [0.5, 0, 0.5, 1], [0.5, 0.5, 0, 1],
[0.5, 0, 0, 1], [0, 0, 0.5, 1], [0, 1, 1, 1],
[1, 0, 1, 1]])
assert len(img.shape) == 3
depth = img.shape[2]
assert depth <= color_table.shape[1]
assert depth == 1 or depth == 3 or depth == 4
## Set red channel to 1 if image is GRY.
if depth == 1:
color_table[:, 0] = 1
num_colors = color_table.shape[0]
for num_boxes in range(1, num_colors + 2):
# Generate draw_bounding_box_op drawn image
image = np.copy(img)
color = color_table[(num_boxes - 1) % num_colors, 0:depth]
test_drawn_image = self._fillBorder(image, color)
bboxes = np.asarray([0, 0, 1, 1])
bboxes = np.vstack([bboxes for _ in range(num_boxes)])
bboxes = math_ops.to_float(bboxes)
bboxes = array_ops.expand_dims(bboxes, 0)
image = ops.convert_to_tensor(image)
image = image_ops_impl.convert_image_dtype(image, dtypes.float32)
image = array_ops.expand_dims(image, 0)
image = image_ops.draw_bounding_boxes(image, bboxes)
with self.test_session(use_gpu=False) as sess:
op_drawn_image = np.squeeze(sess.run(image), 0)
self.assertAllEqual(test_drawn_image, op_drawn_image)
示例7: _sample_n
def _sample_n(self, n, seed=None):
shape = array_ops.concat(([n], self.batch_shape()), 0)
samples = random_ops.random_uniform(shape=shape,
dtype=self.dtype,
seed=seed)
return (array_ops.expand_dims(self.a, 0) +
array_ops.expand_dims(self.range(), 0) * samples)
示例8: testCrfLogLikelihood
def testCrfLogLikelihood(self):
inputs = np.array(
[[4, 5, -3], [3, -1, 3], [-1, 2, 1], [0, 0, 0]], dtype=np.float32)
transition_params = np.array(
[[-3, 5, -2], [3, 4, 1], [1, 2, 1]], dtype=np.float32)
sequence_lengths = np.array(3, dtype=np.int32)
num_words = inputs.shape[0]
num_tags = inputs.shape[1]
with self.test_session() as sess:
all_sequence_log_likelihoods = []
# Make sure all probabilities sum to 1.
for tag_indices in itertools.product(
range(num_tags), repeat=sequence_lengths):
tag_indices = list(tag_indices)
tag_indices.extend([0] * (num_words - sequence_lengths))
sequence_log_likelihood, _ = crf.crf_log_likelihood(
inputs=array_ops.expand_dims(inputs, 0),
tag_indices=array_ops.expand_dims(tag_indices, 0),
sequence_lengths=array_ops.expand_dims(sequence_lengths, 0),
transition_params=constant_op.constant(transition_params))
all_sequence_log_likelihoods.append(sequence_log_likelihood)
total_log_likelihood = math_ops.reduce_logsumexp(
all_sequence_log_likelihoods)
tf_total_log_likelihood = sess.run(total_log_likelihood)
self.assertAllClose(tf_total_log_likelihood, 0.0)
示例9: crf_unary_score
def crf_unary_score(tag_indices, sequence_lengths, inputs):
"""Computes the unary scores of tag sequences.
Args:
tag_indices: A [batch_size, max_seq_len] matrix of tag indices.
sequence_lengths: A [batch_size] vector of true sequence lengths.
inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials.
Returns:
unary_scores: A [batch_size] vector of unary scores.
"""
batch_size = array_ops.shape(inputs)[0]
max_seq_len = array_ops.shape(inputs)[1]
num_tags = array_ops.shape(inputs)[2]
flattened_inputs = array_ops.reshape(inputs, [-1])
offsets = array_ops.expand_dims(
math_ops.range(batch_size) * max_seq_len * num_tags, 1)
offsets += array_ops.expand_dims(math_ops.range(max_seq_len) * num_tags, 0)
flattened_tag_indices = array_ops.reshape(offsets + tag_indices, [-1])
unary_scores = array_ops.reshape(
array_ops.gather(flattened_inputs, flattened_tag_indices),
[batch_size, max_seq_len])
masks = _lengths_to_masks(sequence_lengths, array_ops.shape(tag_indices)[1])
unary_scores = math_ops.reduce_sum(unary_scores * masks, 1)
return unary_scores
示例10: testCrfSequenceScore
def testCrfSequenceScore(self):
transition_params = np.array(
[[-3, 5, -2], [3, 4, 1], [1, 2, 1]], dtype=np.float32)
# Test both the length-1 and regular cases.
sequence_lengths_list = [
np.array(3, dtype=np.int32),
np.array(1, dtype=np.int32)
]
inputs_list = [
np.array([[4, 5, -3], [3, -1, 3], [-1, 2, 1], [0, 0, 0]],
dtype=np.float32),
np.array([[4, 5, -3]],
dtype=np.float32),
]
tag_indices_list = [
np.array([1, 2, 1, 0], dtype=np.int32),
np.array([1], dtype=np.int32)
]
for sequence_lengths, inputs, tag_indices in zip(sequence_lengths_list,
inputs_list,
tag_indices_list):
with self.test_session() as sess:
sequence_score = crf.crf_sequence_score(
inputs=array_ops.expand_dims(inputs, 0),
tag_indices=array_ops.expand_dims(tag_indices, 0),
sequence_lengths=array_ops.expand_dims(sequence_lengths, 0),
transition_params=constant_op.constant(transition_params))
sequence_score = array_ops.squeeze(sequence_score, [0])
tf_sequence_score = sess.run(sequence_score)
expected_sequence_score = self.calculateSequenceScore(
inputs, transition_params, tag_indices, sequence_lengths)
self.assertAllClose(tf_sequence_score, expected_sequence_score)
示例11: set_model
def set_model(self, model):
self.model = model
self.sess = K.get_session()
if self.histogram_freq and self.merged is None:
for layer in self.model.layers:
for weight in layer.weights:
tf_summary.histogram(weight.name, weight)
if self.write_images:
w_img = array_ops.squeeze(weight)
shape = w_img.get_shape()
if len(shape) > 1 and shape[0] > shape[1]:
w_img = array_ops.transpose(w_img)
if len(shape) == 1:
w_img = array_ops.expand_dims(w_img, 0)
w_img = array_ops.expand_dims(array_ops.expand_dims(w_img, 0), -1)
tf_summary.image(weight.name, w_img)
if hasattr(layer, 'output'):
tf_summary.histogram('{}_out'.format(layer.name), layer.output)
self.merged = tf_summary.merge_all()
if self.write_graph:
self.writer = tf_summary.FileWriter(self.log_dir, self.sess.graph)
else:
self.writer = tf_summary.FileWriter(self.log_dir)
示例12: cudnn_lstm
def cudnn_lstm(inputs, input_h, input_c, kernel, recurrent_kernel, bias, units):
inputs = array_ops.transpose(inputs, perm=(1, 0, 2))
input_h = array_ops.expand_dims(input_h, axis=0)
input_c = array_ops.expand_dims(input_c, axis=0)
params = _canonical_to_params(
weights=[
kernel[:, :units],
kernel[:, units:units * 2],
kernel[:, units * 2:units * 3],
kernel[:, units * 3:],
recurrent_kernel[:, :units],
recurrent_kernel[:, units:units * 2],
recurrent_kernel[:, units * 2:units * 3],
recurrent_kernel[:, units * 3:],
],
biases=[
bias[:units],
bias[units:units * 2],
bias[units * 2:units * 3],
bias[units * 3:units * 4],
bias[units * 4:units * 5],
bias[units * 5:units * 6],
bias[units * 6:units * 7],
bias[units * 7:],
],
shape=constant_op.constant([-1]))
outputs, h, c, _ = gen_cudnn_rnn_ops.cudnn_rnn(
inputs, input_h=input_h, input_c=input_c, params=params)
outputs = array_ops.transpose(outputs, perm=[1, 0, 2])
h = h[0]
c = c[0]
return outputs, [h, c], constant_op.constant(
'cudnn', dtype=dtypes.string, name='runtime')
示例13: testCrfLogNorm
def testCrfLogNorm(self):
inputs = np.array(
[[4, 5, -3], [3, -1, 3], [-1, 2, 1], [0, 0, 0]], dtype=np.float32)
transition_params = np.array(
[[-3, 5, -2], [3, 4, 1], [1, 2, 1]], dtype=np.float32)
num_words = inputs.shape[0]
num_tags = inputs.shape[1]
sequence_lengths = np.array(3, dtype=np.int32)
with self.test_session() as sess:
all_sequence_scores = []
# Compare the dynamic program with brute force computation.
for tag_indices in itertools.product(
range(num_tags), repeat=sequence_lengths):
tag_indices = list(tag_indices)
tag_indices.extend([0] * (num_words - sequence_lengths))
all_sequence_scores.append(
crf.crf_sequence_score(
inputs=array_ops.expand_dims(inputs, 0),
tag_indices=array_ops.expand_dims(tag_indices, 0),
sequence_lengths=array_ops.expand_dims(sequence_lengths, 0),
transition_params=constant_op.constant(transition_params)))
brute_force_log_norm = math_ops.reduce_logsumexp(all_sequence_scores)
log_norm = crf.crf_log_norm(
inputs=array_ops.expand_dims(inputs, 0),
sequence_lengths=array_ops.expand_dims(sequence_lengths, 0),
transition_params=constant_op.constant(transition_params))
log_norm = array_ops.squeeze(log_norm, [0])
tf_brute_force_log_norm, tf_log_norm = sess.run(
[brute_force_log_norm, log_norm])
self.assertAllClose(tf_log_norm, tf_brute_force_log_norm)
示例14: power_sums_tensor
def power_sums_tensor(array_size, power_matrix, multiplier):
r"""Computes \sum_{i=0}^{N-1} A^i B (A^i)^T for N=0..(array_size + 1).
Args:
array_size: The number of non-trivial sums to pre-compute.
power_matrix: The "A" matrix above.
multiplier: The "B" matrix above
Returns:
A Tensor with S[N] = \sum_{i=0}^{N-1} A^i B (A^i)^T
S[0] is the zero matrix
S[1] is B
S[2] is A B A^T + B
...and so on
"""
array_size = math_ops.cast(array_size, dtypes.int32)
power_matrix = ops.convert_to_tensor(power_matrix)
identity_like_power_matrix = linalg_ops.eye(
array_ops.shape(power_matrix)[0], dtype=power_matrix.dtype)
identity_like_power_matrix.set_shape(
ops.convert_to_tensor(power_matrix).get_shape())
transition_powers = functional_ops.scan(
lambda previous_power, _: math_ops.matmul(previous_power, power_matrix),
math_ops.range(array_size - 1),
initializer=identity_like_power_matrix)
summed = math_ops.cumsum(
array_ops.concat([
array_ops.expand_dims(multiplier, 0), math_ops.matmul(
batch_times_matrix(transition_powers, multiplier),
transition_powers,
adjoint_b=True)
], 0))
return array_ops.concat(
[array_ops.expand_dims(array_ops.zeros_like(multiplier), 0), summed], 0)
示例15: _smart_select
def _smart_select(pred, fn_then, fn_else):
"""Selects fn_then() or fn_else() based on the value of pred.
The purpose of this function is the same as `utils.smart_cond`. However, at
the moment there is a bug (b/36297356) that seems to kick in only when
`smart_cond` delegates to `tf.cond`, which sometimes results in the training
hanging when using parameter servers. This function will output the result
of `fn_then` or `fn_else` if `pred` is known at graph construction time.
Otherwise, it will use `tf.where` which will result in some redundant work
(both branches will be computed but only one selected). However, the tensors
involved will usually be small (means and variances in batchnorm), so the
cost will be small and will not be incurred at all if `pred` is a constant.
Args:
pred: A boolean scalar `Tensor`.
fn_then: A callable to use when pred==True.
fn_else: A callable to use when pred==False.
Returns:
A `Tensor` whose value is fn_then() or fn_else() based on the value of pred.
"""
pred_value = utils.constant_value(pred)
if pred_value:
return fn_then()
elif pred_value is False:
return fn_else()
t_then = array_ops.expand_dims(fn_then(), 0)
t_else = array_ops.expand_dims(fn_else(), 0)
pred = array_ops.reshape(pred, [1])
result = array_ops.where(pred, t_then, t_else)
return array_ops.squeeze(result, [0])