当前位置: 首页>>代码示例>>Python>>正文


Python array_ops.concat函数代码示例

本文整理汇总了Python中tensorflow.python.ops.array_ops.concat函数的典型用法代码示例。如果您正苦于以下问题:Python concat函数的具体用法?Python concat怎么用?Python concat使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了concat函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testConcatTuple

 def testConcatTuple(self):
   c1 = np.random.rand(4, 4)
   c2 = np.random.rand(4, 4)
   with self.test_session():
     concat_list_t = array_ops.concat(0, [c1, c2])
     concat_tuple_t = array_ops.concat(0, (c1, c2))
     self.assertAllEqual(concat_list_t.eval(), concat_tuple_t.eval())
开发者ID:kadeng,项目名称:tensorflow,代码行数:7,代码来源:concat_op_test.py

示例2: testConcatNoScalars

 def testConcatNoScalars(self):
   with self.cached_session():
     scalar = constant_op.constant(7)
     dim = array_ops.placeholder(dtypes.int32)
     with self.assertRaisesRegexp(
         ValueError, r"Can't concatenate scalars \(use tf\.stack instead\)"):
       array_ops.concat([scalar, scalar, scalar], dim)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:7,代码来源:concat_op_test.py

示例3: circular_pad

    def circular_pad(input_, width, kernel_size):
      """Pad input_ for computing (circular) convolution.

      Args:
        input_: the input tensor
        width: the width of the tensor.
        kernel_size: the kernel size of the filter.
      Returns:
        a tensor whose width is (width + kernel_size - 1).
      """
      beginning = kernel_size // 2
      end = kernel_size - 1 - beginning

      tmp_up = array_ops.slice(input_, [0, width - beginning, 0, 0],
                               [-1, beginning, width, -1])
      tmp_down = array_ops.slice(input_, [0, 0, 0, 0], [-1, end, width, -1])
      tmp = array_ops.concat([tmp_up, input_, tmp_down], 1)

      new_width = width + kernel_size - 1
      tmp_left = array_ops.slice(tmp, [0, 0, width - beginning, 0],
                                 [-1, new_width, beginning, -1])
      tmp_right = array_ops.slice(tmp, [0, 0, 0, 0], [-1, new_width, end, -1])

      final = array_ops.concat([tmp_left, tmp, tmp_right], 2)
      return final
开发者ID:HughKu,项目名称:tensorflow,代码行数:25,代码来源:init_ops_test.py

示例4: _testGradientsSimple

 def _testGradientsSimple(self, dtype):
   # Test both positive and negative concat axis.
   # -2 and 1 correspond to the same axis for 3-dimensional tensors.
   for axis in [-2, 1]:
     with self.cached_session(use_gpu=True):
       inp = []
       inp_tensors = []
       for x in [1, 2, 6]:
         shape = [10, x, 2]
         t = np.random.rand(*shape).astype(dtype.as_numpy_dtype)
         if dtype.is_complex:
           t += -1j * t
         inp.append(t)
         inp_tensors.append(
             constant_op.constant(
                 t.flatten(),
                 shape=shape,
                 dtype=dtype))
       c = array_ops.concat(inp_tensors, axis)
       output_shape = [10, 9, 2]
       grad_inp = np.random.rand(*output_shape).astype(dtype.as_numpy_dtype)
       if dtype.is_complex:
         grad_inp += -1j * grad_inp
       grad_tensor = constant_op.constant(
           grad_inp.flatten(), shape=output_shape)
       grad = gradients_impl.gradients([c], inp_tensors, [grad_tensor])
       concated_grad = array_ops.concat(grad, axis)
       result = self.evaluate(concated_grad)
   self.assertAllEqual(result, grad_inp)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:29,代码来源:concat_op_test.py

示例5: _RunAndVerifyGradientsRandom

  def _RunAndVerifyGradientsRandom(self):
    # Random dims of rank 5
    input_shape = np.random.randint(1, 5, size=5)
    # Random number of tensors
    num_tensors = np.random.randint(12, 20)
    # Random dim to concat on
    concat_dim = np.random.randint(5)
    concat_dim_sizes = np.random.randint(1, 5, size=num_tensors)
    with self.cached_session(use_gpu=True):
      inp = []
      inp_tensors = []
      for x in concat_dim_sizes:
        shape = input_shape
        shape[concat_dim] = x
        t = np.random.rand(*shape).astype("f")
        inp.append(t)
        inp_tensors.append(
            constant_op.constant(t.flatten(), shape=shape,
                                 dtype=dtypes.float32))
      c = array_ops.concat(inp_tensors, concat_dim)
      output_shape = input_shape
      output_shape[concat_dim] = concat_dim_sizes.sum()
      grad_inp = np.random.rand(*output_shape).astype("f")
      grad_tensor = constant_op.constant(grad_inp.flatten(), shape=output_shape)
      grad = gradients_impl.gradients([c], inp_tensors, [grad_tensor])
      concated_grad = array_ops.concat(grad, concat_dim)
      result = self.evaluate(concated_grad)

    self.assertAllEqual(result, grad_inp)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:29,代码来源:concat_op_test.py

示例6: _BiasAddGradGrad

def _BiasAddGradGrad(op, received_grad):
  """Gradient for the BiasAddGrad op.

  Args:
    op: BiasAddGrad op for which we are calculating gradients.
    received_grad: The gradients passed to the BiasAddGrad op.

  Returns:
    A single gradient Tensor for the input to BiasAddGrad (which
    is the gradient of the bias term in BiasAdd)
  """

  try:
    data_format = op.get_attr("data_format")
  except ValueError:
    data_format = None

  shape = array_ops.shape(op.inputs[0])
  rank = array_ops.rank(op.inputs[0])
  bias_shape = array_ops.shape(received_grad)

  if data_format == b"NCHW":
    expanded_shape = array_ops.concat([
        array_ops.ones_like(shape[:-3]), bias_shape,
        array_ops.ones_like(shape[-2:])
    ], 0)
    tile_mults = array_ops.concat([shape[:-3], [1], shape[-2:]], 0)
  else:
    expanded_shape = array_ops.concat(
        [array_ops.ones_like(shape[:-1]), bias_shape], 0)
    tile_mults = array_ops.concat([shape[:-1], [1]], 0)

  expanded_grad = array_ops.reshape(received_grad, expanded_shape)
  return array_ops.tile(expanded_grad, tile_mults)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:34,代码来源:nn_grad.py

示例7: _concat_along_batch_dim

def _concat_along_batch_dim(tensor_list):
  """Concatenate tensors along batch (first) dimension.

  Args:
    tensor_list: list of Tensors or list of tuples of Tensors.

  Returns:
    Tensor or tuple of Tensors.

  Raises:
    ValueError: If 'tensor_list' is empty.

  """
  if not tensor_list:
    raise ValueError(
        "Cannot concatenate Tensors if there are no Tensors to concatenate.")

  if isinstance(tensor_list[0], (tuple, list)):
    # [(tensor1a, tensor1b),
    #  (tensor2a, tensor2b), ...] --> (tensor_a, tensor_b)
    return tuple(
        array_ops.concat(tensors, axis=0) for tensors in zip(*tensor_list))
  else:
    # [tensor1, tensor2] --> tensor
    return array_ops.concat(tensor_list, axis=0)
开发者ID:dyoung418,项目名称:tensorflow,代码行数:25,代码来源:fisher_blocks.py

示例8: sample

  def sample(self, n, seed=None, name="sample"):
    """Generate `n` samples.

    Args:
      n: scalar.  Number of samples to draw from each distribution.
      seed: Python integer seed for RNG.
      name: name to give to the op.

    Returns:
      samples: a `Tensor` of shape `(n,) + self.batch_shape` with values of type
          `self.dtype`.
    """
    with ops.name_scope(self.name):
      with ops.op_scope([self.p, n], name):
        n = ops.convert_to_tensor(n, name="n")
        p_2d = array_ops.reshape(self.p, array_ops.pack([-1, 1]))
        q_2d = 1. - p_2d
        probs = array_ops.concat(1, [q_2d, p_2d])
        samples = random_ops.multinomial(math_ops.log(probs), n, seed=seed)
        ret = array_ops.reshape(
            array_ops.transpose(samples),
            array_ops.concat(0,
                             [array_ops.expand_dims(n, 0), self.batch_shape()]))
        ret.set_shape(tensor_shape.vector(tensor_util.constant_value(n))
                      .concatenate(self.get_batch_shape()))
        return math_ops.cast(ret, self.dtype)
开发者ID:285219011,项目名称:hello-world,代码行数:26,代码来源:bernoulli.py

示例9: _forward

  def _forward(self, x):
    y = x
    # Pad the event_ndims with a zeros vector. We need this because it lets
    # us infer the scale in the inverse function.
    if self._static_event_ndims == 0:
      y = array_ops.expand_dims(y, dim=-1)
      zeros = array_ops.zeros_like(y)
    else:
      shape = array_ops.concat(0, (array_ops.shape(x)[:-1], [1]))
      zeros = array_ops.zeros(shape, dtype=y.dtype)
    y = array_ops.concat(array_ops.rank(y)-1, (y, zeros))

    # Set shape hints.
    if x.get_shape().ndims is not None:
      shape = x.get_shape().as_list()
      if self._static_event_ndims == 0:
        shape += [2]
      elif shape[-1] is not None:
        shape[-1] += 1
      shape = tensor_shape.TensorShape(shape)
      y.get_shape().assert_is_compatible_with(shape)
      y.set_shape(shape)

    # Since we only support event_ndims in [0, 1] and we do padding, we always
    # reduce over the last dimension, i.e., dim=-1 (which is the default).
    return nn_ops.softmax(y)
开发者ID:Qstar,项目名称:tensorflow,代码行数:26,代码来源:bijector.py

示例10: _get_sparse_tensors

 def _get_sparse_tensors(self, inputs, weight_collections=None,
                         trainable=None):
   sparse_tensors = self.categorical_column._get_sparse_tensors(inputs)
   id_tensor = sparse_tensors.id_tensor
   weight_tensor = sparse_tensors.weight_tensor
   # Expands final dimension, so that embeddings are not combined during
   # embedding lookup.
   check_id_rank = check_ops.assert_equal(
       array_ops.rank(id_tensor), 2,
       data=[
           'Column {} expected ID tensor of rank 2. '.format(self.name),
           'id_tensor shape: ', array_ops.shape(id_tensor)])
   with ops.control_dependencies([check_id_rank]):
     id_tensor = sparse_ops.sparse_reshape(
         id_tensor,
         shape=array_ops.concat([id_tensor.dense_shape, [1]], axis=0))
   if weight_tensor is not None:
     check_weight_rank = check_ops.assert_equal(
         array_ops.rank(weight_tensor), 2,
         data=[
             'Column {} expected weight tensor of rank 2.'.format(self.name),
             'weight_tensor shape:', array_ops.shape(weight_tensor)])
     with ops.control_dependencies([check_weight_rank]):
       weight_tensor = sparse_ops.sparse_reshape(
           weight_tensor,
           shape=array_ops.concat([weight_tensor.dense_shape, [1]], axis=0))
   return fc._CategoricalColumn.IdWeightPair(id_tensor, weight_tensor)
开发者ID:DILASSS,项目名称:tensorflow,代码行数:27,代码来源:sequential_feature_column.py

示例11: _to_dense

  def _to_dense(self):
    num_cols = 0
    rows = []
    broadcasted_blocks = [operator.to_dense() for operator in self.operators]
    broadcasted_blocks = linear_operator_util.broadcast_matrix_batch_dims(
        broadcasted_blocks)
    for block in broadcasted_blocks:
      batch_row_shape = array_ops.shape(block)[:-1]

      zeros_to_pad_before_shape = array_ops.concat(
          [batch_row_shape, [num_cols]], axis=-1)
      zeros_to_pad_before = array_ops.zeros(
          shape=zeros_to_pad_before_shape, dtype=block.dtype)
      num_cols += array_ops.shape(block)[-1]
      zeros_to_pad_after_shape = array_ops.concat(
          [batch_row_shape,
           [self.domain_dimension_tensor() - num_cols]], axis=-1)
      zeros_to_pad_after = array_ops.zeros(
          shape=zeros_to_pad_after_shape, dtype=block.dtype)

      rows.append(array_ops.concat(
          [zeros_to_pad_before, block, zeros_to_pad_after], axis=-1))

    mat = array_ops.concat(rows, axis=-2)
    mat.set_shape(self.shape)
    return mat
开发者ID:aritratony,项目名称:tensorflow,代码行数:26,代码来源:linear_operator_block_diag.py

示例12: testZerosCacheDoesntLeakAcrossModes

  def testZerosCacheDoesntLeakAcrossModes(self):
    with ops.Graph().as_default():
      t = random_ops.random_normal(shape=[100, 2])
      x = random_ops.random_normal(shape=[100, 4])
      dy = random_ops.random_normal(shape=[100, 4])
      with backprop.GradientTape() as gradient_tape:
        gradient_tape.watch(x)
        x1, _ = array_ops.split(x, num_or_size_splits=2, axis=1)
        y1 = x1 ** 2.
        y = array_ops.concat([y1, t], axis=1)

      dx = gradient_tape.gradient(y, x, output_gradients=dy)
      with self.test_session() as sess:
        sess.run(variables.global_variables_initializer())
        sess.run(dx)

    t = random_ops.random_normal(shape=[100, 2])
    x = random_ops.random_normal(shape=[100, 4])
    dy = random_ops.random_normal(shape=[100, 4])
    with backprop.GradientTape() as gradient_tape:
      gradient_tape.watch(x)
      x1, _ = array_ops.split(x, num_or_size_splits=2, axis=1)
      y1 = x1 ** 2.
      y = array_ops.concat([y1, t], axis=1)

    dx = gradient_tape.gradient(y, x, output_gradients=dy)
开发者ID:meteorcloudy,项目名称:tensorflow,代码行数:26,代码来源:backprop_test.py

示例13: same_dynamic_shape

def same_dynamic_shape(a, b):
  """Returns whether a and b have the same dynamic shape.

  Args:
    a: `Tensor`
    b: `Tensor`

  Returns:
    `Boolean` `Tensor` representing if both tensors have the same shape.
  """
  a = ops.convert_to_tensor(a, name="a")
  b = ops.convert_to_tensor(b, name="b")

  # One of the shapes isn't fully defined, so we need to use the dynamic
  # shape.
  return control_flow_ops.cond(
      math_ops.equal(array_ops.rank(a), array_ops.rank(b)),
      # Here we can't just do math_ops.equal(a.shape, b.shape), since
      # static shape inference may break the equality comparison between
      # shape(a) and shape(b) in math_ops.equal.
      lambda: math_ops.reduce_all(math_ops.equal(
          array_ops.concat((
              array_ops.shape(a),
              array_ops.shape(b)), 0),
          array_ops.concat((
              array_ops.shape(b),
              array_ops.shape(a)), 0))),
      lambda: constant_op.constant(False))
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:28,代码来源:distribution_util.py

示例14: _SparseDenseCwiseMulOrDivGrad

def _SparseDenseCwiseMulOrDivGrad(op, grad, is_mul):
  """Common code for SparseDenseCwise{Mul,Div} gradients."""
  x_indices = op.inputs[0]
  x_shape = op.inputs[2]
  y = op.inputs[3]

  y_shape = math_ops.to_int64(array_ops.shape(y))
  num_added_dims = array_ops.expand_dims(
      array_ops.size(x_shape) - array_ops.size(y_shape), 0)
  augmented_y_shape = array_ops.concat(
      [array_ops.ones(num_added_dims, ops.dtypes.int64), y_shape], 0)

  scaling = x_shape // augmented_y_shape
  scaled_indices = x_indices // scaling
  scaled_indices = array_ops.slice(scaled_indices,
                                   array_ops.concat([[0], num_added_dims], 0),
                                   [-1, -1])
  dense_vals = array_ops.gather_nd(y, scaled_indices)

  if is_mul:
    dx = grad * dense_vals
    dy_val = grad * op.inputs[1]
  else:
    dx = grad / dense_vals
    dy_val = grad * (-op.inputs[1] / math_ops.square(dense_vals))
  # indices can repeat after scaling, so we can't use sparse_to_dense().
  dy = sparse_ops.sparse_add(
      array_ops.zeros_like(y),
      sparse_tensor.SparseTensor(scaled_indices, dy_val, y_shape))

  # (sp_indices, sp_vals, sp_shape, dense)
  return (None, dx, None, dy)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:32,代码来源:sparse_grad.py

示例15: quantiles_ready

  def quantiles_ready():
    """The subgraph for when the quantiles are ready."""
    quantized_feature = quantile_ops.quantiles([sparse_column_values], [],
                                               [quantile_buckets], [])
    quantized_feature = math_ops.cast(quantized_feature[0], dtypes.int64)
    quantized_feature = array_ops.reshape(quantized_feature, [-1])
    example_indices, _ = array_ops.split(
        sparse_column_indices, num_or_size_splits=2, axis=1)
    example_indices = array_ops.squeeze(example_indices, [1])
    filtered_gradients = array_ops.gather(gradients, example_indices)
    filtered_hessians = array_ops.gather(hessians, example_indices)
    filtered_partition_ids = array_ops.gather(example_partition_ids,
                                              example_indices)
    unique_partitions, mapped_partitions = array_ops.unique(
        example_partition_ids)

    # Compute aggregate stats for each partition.
    per_partition_gradients = math_ops.unsorted_segment_sum(
        gradients, mapped_partitions, array_ops.size(unique_partitions))
    per_partition_hessians = math_ops.unsorted_segment_sum(
        hessians, mapped_partitions, array_ops.size(unique_partitions))

    # Prepend a bias feature per partition that accumulates the stats for all
    # examples in that partition.
    bias_feature_ids = array_ops.fill(
        array_ops.shape(unique_partitions), _BIAS_FEATURE_ID)
    bias_feature_ids = math_ops.cast(bias_feature_ids, dtypes.int64)
    partition_ids = array_ops.concat(
        [unique_partitions, filtered_partition_ids], 0)
    filtered_gradients = array_ops.concat(
        [per_partition_gradients, filtered_gradients], 0)
    filtered_hessians = array_ops.concat(
        [per_partition_hessians, filtered_hessians], 0)
    bucket_ids = array_ops.concat([bias_feature_ids, quantized_feature], 0)
    return partition_ids, bucket_ids, filtered_gradients, filtered_hessians
开发者ID:1000sprites,项目名称:tensorflow,代码行数:35,代码来源:ordinal_split_handler.py


注:本文中的tensorflow.python.ops.array_ops.concat函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。