本文整理汇总了Python中tensorflow.python.layers.convolutional.separable_conv2d函数的典型用法代码示例。如果您正苦于以下问题:Python separable_conv2d函数的具体用法?Python separable_conv2d怎么用?Python separable_conv2d使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了separable_conv2d函数的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testFunctionalConv2DNoReuse
def testFunctionalConv2DNoReuse(self):
height, width = 7, 9
images = random_ops.random_uniform((5, height, width, 3), seed=1)
conv_layers.separable_conv2d(images, 32, [3, 3])
self.assertEqual(len(variables.trainable_variables()), 3)
conv_layers.separable_conv2d(images, 32, [3, 3])
self.assertEqual(len(variables.trainable_variables()), 6)
示例2: testInvalidKernelSize
def testInvalidKernelSize(self):
height, width = 7, 9
images = random_ops.random_uniform((5, height, width, 3), seed=1)
with self.assertRaisesRegexp(ValueError, 'kernel_size'):
conv_layers.separable_conv2d(images, 32, (1, 2, 3))
with self.assertRaisesRegexp(ValueError, 'kernel_size'):
conv_layers.separable_conv2d(images, 32, None)
示例3: testInvalidStrides
def testInvalidStrides(self):
height, width = 7, 9
images = random_ops.random_uniform((5, height, width, 3), seed=1)
with self.assertRaisesRegexp(ValueError, 'strides'):
conv_layers.separable_conv2d(images, 32, 3, strides=(1, 2, 3))
with self.assertRaisesRegexp(ValueError, 'strides'):
conv_layers.separable_conv2d(images, 32, 3, strides=None)
示例4: testFunctionalConv2DReuseFromScope
def testFunctionalConv2DReuseFromScope(self):
with variable_scope.variable_scope('scope'):
height, width = 7, 9
images = random_ops.random_uniform((5, height, width, 3), seed=1)
conv_layers.separable_conv2d(images, 32, [3, 3], name='sepconv1')
self.assertEqual(len(variables.trainable_variables()), 3)
with variable_scope.variable_scope('scope', reuse=True):
conv_layers.separable_conv2d(images, 32, [3, 3], name='sepconv1')
self.assertEqual(len(variables.trainable_variables()), 3)
示例5: testFunctionalConv2DNoReuse
def testFunctionalConv2DNoReuse(self):
height, width = 7, 9
images = random_ops.random_uniform((5, height, width, 3), seed=1)
conv_layers.separable_conv2d(images, 32, [3, 3])
self.assertEqual(
len(ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES)), 3)
conv_layers.separable_conv2d(images, 32, [3, 3])
self.assertEqual(
len(ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES)), 6)
示例6: testFunctionalConv2DInitializerFromScope
def testFunctionalConv2DInitializerFromScope(self):
with self.test_session() as sess:
with variable_scope.variable_scope(
'scope', initializer=init_ops.ones_initializer()):
height, width = 7, 9
images = random_ops.random_uniform((5, height, width, 3), seed=1)
conv_layers.separable_conv2d(images, 32, [3, 3], name='sepconv1')
weights = variables.trainable_variables()
# Check the names of weights in order.
self.assertTrue('depthwise_kernel' in weights[0].name)
self.assertTrue('pointwise_kernel' in weights[1].name)
self.assertTrue('bias' in weights[2].name)
sess.run(variables.global_variables_initializer())
weights = sess.run(weights)
# Check that the kernel weights got initialized to ones (from scope)
self.assertAllClose(weights[0], np.ones((3, 3, 3, 1)))
self.assertAllClose(weights[1], np.ones((1, 1, 3, 32)))
# Check that the bias still got initialized to zeros.
self.assertAllClose(weights[2], np.zeros((32)))
示例7: testInvalidDataFormat
def testInvalidDataFormat(self):
height, width = 7, 9
images = random_ops.random_uniform((5, height, width, 3), seed=1)
with self.assertRaisesRegexp(ValueError, 'data_format'):
conv_layers.separable_conv2d(images, 32, 3, data_format='invalid')