当前位置: 首页>>代码示例>>Python>>正文


Python generic_utils.deserialize_keras_object函数代码示例

本文整理汇总了Python中tensorflow.python.keras.utils.generic_utils.deserialize_keras_object函数的典型用法代码示例。如果您正苦于以下问题:Python deserialize_keras_object函数的具体用法?Python deserialize_keras_object怎么用?Python deserialize_keras_object使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了deserialize_keras_object函数的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: deserialize

def deserialize(config, custom_objects=None):
  """Inverse of the `serialize` function.

  Arguments:
      config: Optimizer configuration dictionary.
      custom_objects: Optional dictionary mapping
          names (strings) to custom objects
          (classes and functions)
          to be considered during deserialization.

  Returns:
      A Keras Optimizer instance.
  """
  all_classes = {
      'sgd': SGD,
      'rmsprop': RMSprop,
      'adagrad': Adagrad,
      'adadelta': Adadelta,
      'adam': Adam,
      'adamax': Adamax,
      'nadam': Nadam,
      'tfoptimizer': TFOptimizer,
  }
  # Make deserialization case-insensitive for built-in optimizers.
  if config['class_name'].lower() in all_classes:
    config['class_name'] = config['class_name'].lower()
  return deserialize_keras_object(
      config,
      module_objects=all_classes,
      custom_objects=custom_objects,
      printable_module_name='optimizer')
开发者ID:sonnyhu,项目名称:tensorflow,代码行数:31,代码来源:optimizers.py

示例2: deserialize

def deserialize(config, custom_objects=None):
  """Instantiates a layer from a config dictionary.

  Arguments:
      config: dict of the form {'class_name': str, 'config': dict}
      custom_objects: dict mapping class names (or function names)
          of custom (non-Keras) objects to class/functions

  Returns:
      Layer instance (may be Model, Sequential, Network, Layer...)
  """
  from tensorflow.python.keras import models  # pylint: disable=g-import-not-at-top
  globs = globals()  # All layers.
  globs['Network'] = models.Network
  globs['Model'] = models.Model
  globs['Sequential'] = models.Sequential
  layer_class_name = config['class_name']
  if layer_class_name in _DESERIALIZATION_TABLE:
    config['class_name'] = _DESERIALIZATION_TABLE[layer_class_name]

  return deserialize_keras_object(
      config,
      module_objects=globs,
      custom_objects=custom_objects,
      printable_module_name='layer')
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:25,代码来源:serialization.py

示例3: from_config

  def from_config(cls, config, custom_objects=None):
    config = config.copy()
    globs = globals()
    if custom_objects:
      globs = dict(list(globs.items()) + list(custom_objects.items()))
    function_type = config.pop('function_type')
    if function_type == 'function':
      # Simple lookup in custom objects
      function = generic_utils.deserialize_keras_object(
          config['function'],
          custom_objects=custom_objects,
          printable_module_name='function in Lambda layer')
    elif function_type == 'lambda':
      # Unsafe deserialization from bytecode
      function = generic_utils.func_load(config['function'], globs=globs)
    else:
      raise TypeError('Unknown function type:', function_type)

    output_shape_type = config.pop('output_shape_type')
    if output_shape_type == 'function':
      # Simple lookup in custom objects
      output_shape = generic_utils.deserialize_keras_object(
          config['output_shape'],
          custom_objects=custom_objects,
          printable_module_name='output_shape function in Lambda layer')
    elif output_shape_type == 'lambda':
      # Unsafe deserialization from bytecode
      output_shape = generic_utils.func_load(config['output_shape'],
                                             globs=globs)
    else:
      output_shape = config['output_shape']

    # If arguments were numpy array, they have been saved as
    # list. We need to recover the ndarray
    if 'arguments' in config:
      for key in config['arguments']:
        if isinstance(config['arguments'][key], dict):
          arg_dict = config['arguments'][key]
          if 'type' in arg_dict and arg_dict['type'] == 'ndarray':
            # Overwrite the argument with its numpy translation
            config['arguments'][key] = np.array(arg_dict['value'])

    config['function'] = function
    config['output_shape'] = output_shape
    return cls(**config)
开发者ID:didukhle,项目名称:tensorflow,代码行数:45,代码来源:core.py

示例4: deserialize

def deserialize(config, custom_objects=None):
  """Return an `Initializer` object from its config."""
  if tf2.enabled():
    # Class names are the same for V1 and V2 but the V2 classes
    # are aliased in this file so we need to grab them directly
    # from `init_ops_v2`.
    module_objects = {
        obj_name: getattr(init_ops_v2, obj_name)
        for obj_name in dir(init_ops_v2)
    }
  else:
    module_objects = globals()
  return deserialize_keras_object(
      config,
      module_objects=module_objects,
      custom_objects=custom_objects,
      printable_module_name='initializer')
开发者ID:kylin9872,项目名称:tensorflow,代码行数:17,代码来源:initializers.py

示例5: deserialize

def deserialize(config, custom_objects=None):
  return generic_utils.deserialize_keras_object(
      config,
      module_objects=globals(),
      custom_objects=custom_objects,
      printable_module_name="decay")
开发者ID:terrytangyuan,项目名称:tensorflow,代码行数:6,代码来源:learning_rate_schedule.py

示例6: deserialize

def deserialize(config, custom_objects=None):
  return deserialize_keras_object(
      config,
      module_objects=globals(),
      custom_objects=custom_objects,
      printable_module_name='metric function')
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:6,代码来源:metrics.py

示例7: from_config

  def from_config(cls, config, custom_objects=None):
    config = config.copy()
    globs = globals()
    module = config.pop('module', None)
    if module in sys.modules:
      globs.update(sys.modules[module].__dict__)
    elif module is not None:
      # Note: we don't know the name of the function if it's a lambda.
      warnings.warn('{} is not loaded, but a Lambda layer uses it. '
                    'It may cause errors.'.format(module)
                    , UserWarning)
    if custom_objects:
      globs.update(custom_objects)
    function_type = config.pop('function_type')
    if function_type == 'function':
      # Simple lookup in custom objects
      function = generic_utils.deserialize_keras_object(
          config['function'],
          custom_objects=custom_objects,
          printable_module_name='function in Lambda layer')
    elif function_type == 'lambda':
      # Unsafe deserialization from bytecode
      function = generic_utils.func_load(config['function'], globs=globs)
    else:
      raise TypeError('Unknown function type:', function_type)

    output_shape_module = config.pop('output_shape_module', None)
    if output_shape_module in sys.modules:
      globs.update(sys.modules[output_shape_module].__dict__)
    elif output_shape_module is not None:
      # Note: we don't know the name of the function if it's a lambda.
      warnings.warn('{} is not loaded, but a Lambda layer uses it. '
                    'It may cause errors.'.format(output_shape_module)
                    , UserWarning)
    output_shape_type = config.pop('output_shape_type')
    if output_shape_type == 'function':
      # Simple lookup in custom objects
      output_shape = generic_utils.deserialize_keras_object(
          config['output_shape'],
          custom_objects=custom_objects,
          printable_module_name='output_shape function in Lambda layer')
    elif output_shape_type == 'lambda':
      # Unsafe deserialization from bytecode
      output_shape = generic_utils.func_load(config['output_shape'],
                                             globs=globs)
    else:
      output_shape = config['output_shape']

    # If arguments were numpy array, they have been saved as
    # list. We need to recover the ndarray
    if 'arguments' in config:
      for key in config['arguments']:
        if isinstance(config['arguments'][key], dict):
          arg_dict = config['arguments'][key]
          if 'type' in arg_dict and arg_dict['type'] == 'ndarray':
            # Overwrite the argument with its numpy translation
            config['arguments'][key] = np.array(arg_dict['value'])

    config['function'] = function
    config['output_shape'] = output_shape
    return cls(**config)
开发者ID:yanchen036,项目名称:tensorflow,代码行数:61,代码来源:core.py

示例8: deserialize

def deserialize(name, custom_objects=None):
  return deserialize_keras_object(
      name,
      module_objects=globals(),
      custom_objects=custom_objects,
      printable_module_name='loss function')
开发者ID:bunbutter,项目名称:tensorflow,代码行数:6,代码来源:losses.py


注:本文中的tensorflow.python.keras.utils.generic_utils.deserialize_keras_object函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。