当前位置: 首页>>代码示例>>Python>>正文


Python conv_utils.normalize_data_format函数代码示例

本文整理汇总了Python中tensorflow.python.keras.utils.conv_utils.normalize_data_format函数的典型用法代码示例。如果您正苦于以下问题:Python normalize_data_format函数的具体用法?Python normalize_data_format怎么用?Python normalize_data_format使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了normalize_data_format函数的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_normalize_data_format

  def test_normalize_data_format(self):
    self.assertEqual('channels_last',
                     conv_utils.normalize_data_format('Channels_Last'))
    self.assertEqual('channels_first',
                     conv_utils.normalize_data_format('CHANNELS_FIRST'))

    with self.assertRaises(ValueError):
      conv_utils.normalize_data_format('invalid')
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:8,代码来源:conv_utils_test.py

示例2: __init__

 def __init__(self,
              filters,
              kernel_size,
              strides=1,
              padding='valid',
              data_format=None,
              activation=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              **kwargs):
   super(LocallyConnected1D, self).__init__(**kwargs)
   self.filters = filters
   self.kernel_size = conv_utils.normalize_tuple(kernel_size, 1, 'kernel_size')
   self.strides = conv_utils.normalize_tuple(strides, 1, 'strides')
   self.padding = conv_utils.normalize_padding(padding)
   if self.padding != 'valid':
     raise ValueError('Invalid border mode for LocallyConnected1D '
                      '(only "valid" is supported): ' + padding)
   self.data_format = conv_utils.normalize_data_format(data_format)
   self.activation = activations.get(activation)
   self.use_bias = use_bias
   self.kernel_initializer = initializers.get(kernel_initializer)
   self.bias_initializer = initializers.get(bias_initializer)
   self.kernel_regularizer = regularizers.get(kernel_regularizer)
   self.bias_regularizer = regularizers.get(bias_regularizer)
   self.activity_regularizer = regularizers.get(activity_regularizer)
   self.kernel_constraint = constraints.get(kernel_constraint)
   self.bias_constraint = constraints.get(bias_constraint)
   self.input_spec = InputSpec(ndim=3)
开发者ID:didukhle,项目名称:tensorflow,代码行数:35,代码来源:local.py

示例3: __init__

  def __init__(self,
               filters,
               kernel_size,
               strides=(1, 1),
               padding='valid',
               data_format=None,
               dilation_rate=(1, 1),
               activation='tanh',
               recurrent_activation='hard_sigmoid',
               use_bias=True,
               kernel_initializer='glorot_uniform',
               recurrent_initializer='orthogonal',
               bias_initializer='zeros',
               unit_forget_bias=True,
               kernel_regularizer=None,
               recurrent_regularizer=None,
               bias_regularizer=None,
               kernel_constraint=None,
               recurrent_constraint=None,
               bias_constraint=None,
               dropout=0.,
               recurrent_dropout=0.,
               **kwargs):
    super(ConvLSTM2DCell, self).__init__(**kwargs)
    self.filters = filters
    self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2, 'kernel_size')
    self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
    self.padding = conv_utils.normalize_padding(padding)
    self.data_format = conv_utils.normalize_data_format(data_format)
    self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, 2,
                                                    'dilation_rate')
    self.activation = activations.get(activation)
    self.recurrent_activation = activations.get(recurrent_activation)
    self.use_bias = use_bias

    self.kernel_initializer = initializers.get(kernel_initializer)
    self.recurrent_initializer = initializers.get(recurrent_initializer)
    self.bias_initializer = initializers.get(bias_initializer)
    self.unit_forget_bias = unit_forget_bias

    self.kernel_regularizer = regularizers.get(kernel_regularizer)
    self.recurrent_regularizer = regularizers.get(recurrent_regularizer)
    self.bias_regularizer = regularizers.get(bias_regularizer)

    self.kernel_constraint = constraints.get(kernel_constraint)
    self.recurrent_constraint = constraints.get(recurrent_constraint)
    self.bias_constraint = constraints.get(bias_constraint)

    self.dropout = min(1., max(0., dropout))
    self.recurrent_dropout = min(1., max(0., recurrent_dropout))
    self.state_size = (self.filters, self.filters)
    self._dropout_mask = None
    self._recurrent_dropout_mask = None
开发者ID:AnishShah,项目名称:tensorflow,代码行数:53,代码来源:convolutional_recurrent.py

示例4: __init__

 def __init__(self, pool_function, pool_size, strides,
              padding='valid', data_format='channels_last',
              name=None, **kwargs):
   super(Pooling1D, self).__init__(name=name, **kwargs)
   if data_format is None:
     data_format = backend.image_data_format()
   if strides is None:
     strides = pool_size
   self.pool_function = pool_function
   self.pool_size = conv_utils.normalize_tuple(pool_size, 1, 'pool_size')
   self.strides = conv_utils.normalize_tuple(strides, 1, 'strides')
   self.padding = conv_utils.normalize_padding(padding)
   self.data_format = conv_utils.normalize_data_format(data_format)
   self.input_spec = InputSpec(ndim=3)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:14,代码来源:pooling.py

示例5: __init__

 def __init__(self, data_format=None, **kwargs):
   super(Flatten, self).__init__(**kwargs)
   self.data_format = conv_utils.normalize_data_format(data_format)
   self.input_spec = InputSpec(min_ndim=2)
开发者ID:yanchen036,项目名称:tensorflow,代码行数:4,代码来源:core.py


注:本文中的tensorflow.python.keras.utils.conv_utils.normalize_data_format函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。