本文整理汇总了Python中tensorflow.python.keras.testing_utils.get_test_data函数的典型用法代码示例。如果您正苦于以下问题:Python get_test_data函数的具体用法?Python get_test_data怎么用?Python get_test_data使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了get_test_data函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_keras_model_with_lstm
def test_keras_model_with_lstm(self):
input_shape = 10
rnn_state_size = 8
output_shape = 8
timestep = 4
batch = 100
epoch = 10
(x_train, y_train), _ = testing_utils.get_test_data(
train_samples=batch,
test_samples=0,
input_shape=(timestep, input_shape),
num_classes=output_shape)
y_train = keras.utils.to_categorical(y_train, output_shape)
K.set_session(session.Session(config=self.config))
layer = UnifiedLSTM(rnn_state_size)
inputs = keras.layers.Input(
shape=[timestep, input_shape], dtype=dtypes.float32)
outputs, unused_runtime = layer(inputs)
model = keras.models.Model(inputs, outputs)
model.compile('rmsprop', loss='mse')
model.fit(x_train, y_train, epochs=epoch)
示例2: _test_optimizer
def _test_optimizer(optimizer, target=0.75):
np.random.seed(1337)
(x_train, y_train), _ = testing_utils.get_test_data(train_samples=1000,
test_samples=200,
input_shape=(10,),
num_classes=2)
y_train = keras.utils.to_categorical(y_train)
model = _get_model(x_train.shape[1], 20, y_train.shape[1])
model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0)
assert history.history['acc'][-1] >= target
config = keras.optimizers.serialize(optimizer)
optim = keras.optimizers.deserialize(config)
new_config = keras.optimizers.serialize(optim)
new_config['class_name'] = new_config['class_name'].lower()
assert config == new_config
# Test constraints.
model = keras.models.Sequential()
dense = keras.layers.Dense(10,
input_shape=(x_train.shape[1],),
kernel_constraint=lambda x: 0. * x + 1.,
bias_constraint=lambda x: 0. * x + 2.,
activation='relu')
model.add(dense)
model.add(keras.layers.Dense(y_train.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
model.train_on_batch(x_train[:10], y_train[:10])
kernel, bias = dense.get_weights()
np.testing.assert_allclose(kernel, 1., atol=1e-3)
np.testing.assert_allclose(bias, 2., atol=1e-3)
示例3: test_TensorBoard_with_ReduceLROnPlateau
def test_TensorBoard_with_ReduceLROnPlateau(self):
with self.cached_session():
temp_dir = self.get_temp_dir()
self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True)
(x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
train_samples=TRAIN_SAMPLES,
test_samples=TEST_SAMPLES,
input_shape=(INPUT_DIM,),
num_classes=NUM_CLASSES)
y_test = keras.utils.to_categorical(y_test)
y_train = keras.utils.to_categorical(y_train)
model = testing_utils.get_small_sequential_mlp(
num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM)
model.compile(
loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy'])
cbks = [
keras.callbacks.ReduceLROnPlateau(
monitor='val_loss', factor=0.5, patience=4, verbose=1),
keras.callbacks.TensorBoard(log_dir=temp_dir)
]
model.fit(
x_train,
y_train,
batch_size=BATCH_SIZE,
validation_data=(x_test, y_test),
callbacks=cbks,
epochs=2,
verbose=0)
assert os.path.exists(temp_dir)
示例4: test_keras_model_with_gru
def test_keras_model_with_gru(self):
input_shape = 10
rnn_state_size = 8
output_shape = 8
timestep = 4
batch = 100
epoch = 10
(x_train, y_train), _ = testing_utils.get_test_data(
train_samples=batch,
test_samples=0,
input_shape=(timestep, input_shape),
num_classes=output_shape)
y_train = keras.utils.to_categorical(y_train, output_shape)
layer = keras.layers.UnifiedGRU(rnn_state_size)
inputs = keras.layers.Input(
shape=[timestep, input_shape], dtype=dtypes.float32)
outputs = layer(inputs)
model = keras.models.Model(inputs, outputs)
model.compile('rmsprop', loss='mse')
model.fit(x_train, y_train, epochs=epoch)
model.evaluate(x_train, y_train)
model.predict(x_train)
示例5: test_vector_classification_shared_model
def test_vector_classification_shared_model(self):
# Test that functional models that feature internal updates
# and internal losses can be shared.
with self.cached_session():
np.random.seed(1337)
(x_train, y_train), _ = testing_utils.get_test_data(
train_samples=100,
test_samples=0,
input_shape=(10,),
num_classes=2)
y_train = keras.utils.to_categorical(y_train)
inputs = keras.layers.Input(x_train.shape[1:])
x = keras.layers.Dense(16,
activation='relu',
kernel_regularizer=keras.regularizers.l2(1e-5),
bias_regularizer=keras.regularizers.l2(1e-5),
input_shape=x_train.shape[1:])(inputs)
x = keras.layers.BatchNormalization()(x)
base_model = keras.models.Model(inputs, x)
x = keras.layers.Input(x_train.shape[1:])
y = base_model(x)
y = keras.layers.Dense(y_train.shape[-1], activation='softmax')(y)
model = keras.models.Model(x, y)
model.compile(loss='categorical_crossentropy',
optimizer=keras.optimizers.Adam(lr=0.1),
metrics=['accuracy'])
history = model.fit(x_train, y_train, epochs=10, batch_size=16,
validation_data=(x_train, y_train),
verbose=2)
self.assertGreater(history.history['val_acc'][-1], 0.7)
示例6: test_EarlyStopping_with_baseline
def test_EarlyStopping_with_baseline(self):
with self.cached_session():
np.random.seed(1337)
baseline = 0.5
(data, labels), _ = testing_utils.get_test_data(
train_samples=100,
test_samples=50,
input_shape=(1,),
num_classes=NUM_CLASSES)
model = testing_utils.get_small_sequential_mlp(
num_hidden=1, num_classes=1, input_dim=1)
model.compile(
optimizer='sgd', loss='binary_crossentropy', metrics=['acc'])
stopper = keras.callbacks.EarlyStopping(monitor='acc',
baseline=baseline)
hist = model.fit(data, labels, callbacks=[stopper], verbose=0, epochs=20)
assert len(hist.epoch) == 1
patience = 3
stopper = keras.callbacks.EarlyStopping(monitor='acc',
patience=patience,
baseline=baseline)
hist = model.fit(data, labels, callbacks=[stopper], verbose=0, epochs=20)
assert len(hist.epoch) >= patience
示例7: test_image_classification_sequential
def test_image_classification_sequential(self):
with self.cached_session():
np.random.seed(1337)
(x_train, y_train), _ = testing_utils.get_test_data(
train_samples=100,
test_samples=0,
input_shape=(12, 12, 3),
num_classes=2)
y_train = keras.utils.to_categorical(y_train)
model = keras.models.Sequential()
model.add(keras.layers.Conv2D(
4, 3,
padding='same',
activation='relu',
input_shape=x_train.shape[1:]))
model.add(keras.layers.Conv2D(
8, 3,
padding='same',
activation='relu'))
model.add(keras.layers.Conv2D(
16, 3,
padding='same',
activation='relu'))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(y_train.shape[-1], activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.8),
metrics=['accuracy'])
history = model.fit(x_train, y_train, epochs=10, batch_size=16,
validation_data=(x_train, y_train),
verbose=2)
self.assertGreater(history.history['val_acc'][-1], 0.7)
示例8: test_temporal_sample_weights
def test_temporal_sample_weights(self):
num_classes = 5
weighted_class = 3
train_samples = 1000
test_samples = 1000
input_dim = 5
timesteps = 3
model = keras.models.Sequential()
model.add(
keras.layers.TimeDistributed(
keras.layers.Dense(num_classes),
input_shape=(timesteps, input_dim)))
model.add(keras.layers.Activation('softmax'))
np.random.seed(1337)
(_, y_train), _ = testing_utils.get_test_data(
train_samples=train_samples,
test_samples=test_samples,
input_shape=(input_dim,),
num_classes=num_classes)
int_y_train = y_train.copy()
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
class_weight = dict([(i, 1.) for i in range(num_classes)])
class_weight[weighted_class] = 2.
sample_weight = np.ones((y_train.shape[0]))
sample_weight[int_y_train == weighted_class] = 2.
with self.assertRaises(ValueError):
model.compile(
loss='binary_crossentropy',
optimizer=RMSPropOptimizer(learning_rate=0.001),
sample_weight_mode='temporal')
示例9: test_video_classification_functional
def test_video_classification_functional(self):
with self.cached_session():
np.random.seed(1337)
(x_train, y_train), _ = testing_utils.get_test_data(
train_samples=100,
test_samples=0,
input_shape=(4, 8, 8, 3),
num_classes=3)
y_train = keras.utils.to_categorical(y_train)
inputs = keras.layers.Input(shape=x_train.shape[1:])
x = keras.layers.TimeDistributed(
keras.layers.Conv2D(4, 3, activation='relu'))(inputs)
x = keras.layers.BatchNormalization()(x)
x = keras.layers.TimeDistributed(keras.layers.GlobalMaxPooling2D())(x)
x = keras.layers.Conv1D(8, 3, activation='relu')(x)
x = keras.layers.Flatten()(x)
outputs = keras.layers.Dense(y_train.shape[-1], activation='softmax')(x)
model = keras.models.Model(inputs, outputs)
model.compile(loss='categorical_crossentropy',
optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.8),
metrics=['accuracy'])
history = model.fit(x_train, y_train, epochs=10, batch_size=16,
validation_data=(x_train, y_train),
verbose=2)
self.assertGreater(history.history['val_acc'][-1], 0.7)
示例10: test_invalid_loss_or_metrics
def test_invalid_loss_or_metrics(self):
num_classes = 5
train_samples = 1000
test_samples = 1000
input_dim = 5
model = keras.models.Sequential()
model.add(keras.layers.Dense(10, input_shape=(input_dim,)))
model.add(keras.layers.Activation('relu'))
model.add(keras.layers.Dense(num_classes))
model.add(keras.layers.Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=RMSPropOptimizer(learning_rate=0.001))
np.random.seed(1337)
(x_train, y_train), (_, _) = testing_utils.get_test_data(
train_samples=train_samples,
test_samples=test_samples,
input_shape=(input_dim,),
num_classes=num_classes)
with self.assertRaises(ValueError):
model.fit(x_train, np.concatenate([y_train, y_train], axis=-1))
with self.assertRaises(TypeError):
model.compile(loss='categorical_crossentropy',
optimizer=RMSPropOptimizer(learning_rate=0.001),
metrics=set(0))
with self.assertRaises(ValueError):
model.compile(loss=None,
optimizer='rms')
示例11: testOptimizerWithCallableVarList
def testOptimizerWithCallableVarList(self):
train_samples = 20
input_dim = 1
num_classes = 2
(x, y), _ = testing_utils.get_test_data(
train_samples=train_samples,
test_samples=10,
input_shape=(input_dim,),
num_classes=num_classes)
y = keras.utils.to_categorical(y)
num_hidden = 1
model = testing_utils.get_small_sequential_mlp(
num_hidden=num_hidden, num_classes=num_classes)
opt = adam.Adam()
loss = lambda: losses.mean_squared_error(model(x), y)
var_list = lambda: model.trainable_weights
with self.assertRaisesRegexp(
ValueError, 'Weights for model .* have not yet been created'):
var_list()
train_op = opt.minimize(loss, var_list)
if not context.executing_eagerly():
self.evaluate(variables.global_variables_initializer())
self.assertEqual(
[[0.]], self.evaluate(opt.get_slot(var_list()[0], 'm')))
self.evaluate(train_op)
self.assertNotEqual(
[[0.]], self.evaluate(opt.get_slot(var_list()[0], 'm')))
self.assertLen(var_list(), 4)
示例12: test_EarlyStopping_with_baseline
def test_EarlyStopping_with_baseline(self):
with self.test_session():
np.random.seed(1337)
baseline = 0.5
(data, labels), _ = testing_utils.get_test_data(
train_samples=100,
test_samples=50,
input_shape=(1,),
num_classes=NUM_CLASSES)
model = keras.models.Sequential((keras.layers.Dense(
1, input_dim=1, activation='relu'), keras.layers.Dense(
1, activation='sigmoid'),))
model.compile(
optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy'])
stopper = keras.callbacks.EarlyStopping(monitor='acc',
baseline=baseline)
hist = model.fit(data, labels, callbacks=[stopper], verbose=0, epochs=20)
assert len(hist.epoch) == 1
patience = 3
stopper = keras.callbacks.EarlyStopping(monitor='acc',
patience=patience,
baseline=baseline)
hist = model.fit(data, labels, callbacks=[stopper], verbose=0, epochs=20)
assert len(hist.epoch) >= patience
示例13: test_TerminateOnNaN
def test_TerminateOnNaN(self):
with self.test_session():
np.random.seed(1337)
(x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
train_samples=TRAIN_SAMPLES,
test_samples=TEST_SAMPLES,
input_shape=(INPUT_DIM,),
num_classes=NUM_CLASSES)
y_test = keras.utils.to_categorical(y_test)
y_train = keras.utils.to_categorical(y_train)
cbks = [keras.callbacks.TerminateOnNaN()]
model = keras.models.Sequential()
initializer = keras.initializers.Constant(value=1e5)
for _ in range(5):
model.add(
keras.layers.Dense(
2,
input_dim=INPUT_DIM,
activation='relu',
kernel_initializer=initializer))
model.add(keras.layers.Dense(NUM_CLASSES))
model.compile(loss='mean_squared_error', optimizer='rmsprop')
history = model.fit(
x_train,
y_train,
batch_size=BATCH_SIZE,
validation_data=(x_test, y_test),
callbacks=cbks,
epochs=20)
loss = history.history['loss']
assert len(loss) == 1
assert loss[0] == np.inf
示例14: testRNNWithKerasGRUCell
def testRNNWithKerasGRUCell(self):
with self.cached_session() as sess:
input_shape = 10
output_shape = 5
timestep = 4
batch = 100
(x_train, y_train), _ = testing_utils.get_test_data(
train_samples=batch,
test_samples=0,
input_shape=(timestep, input_shape),
num_classes=output_shape)
y_train = keras.utils.to_categorical(y_train)
cell = keras.layers.GRUCell(output_shape)
inputs = array_ops.placeholder(
dtypes.float32, shape=(None, timestep, input_shape))
predict = array_ops.placeholder(
dtypes.float32, shape=(None, output_shape))
outputs, state = rnn.dynamic_rnn(
cell, inputs, dtype=dtypes.float32)
self.assertEqual(outputs.shape.as_list(), [None, timestep, output_shape])
self.assertEqual(state.shape.as_list(), [None, output_shape])
loss = losses.softmax_cross_entropy(predict, state)
train_op = training.GradientDescentOptimizer(0.001).minimize(loss)
sess.run([variables_lib.global_variables_initializer()])
_, outputs, state = sess.run(
[train_op, outputs, state], {inputs: x_train, predict: y_train})
self.assertEqual(len(outputs), batch)
self.assertEqual(len(state), batch)
示例15: testKerasAndTFRNNLayerOutputComparison
def testKerasAndTFRNNLayerOutputComparison(self):
input_shape = 10
output_shape = 5
timestep = 4
batch = 20
(x_train, _), _ = testing_utils.get_test_data(
train_samples=batch,
test_samples=0,
input_shape=(timestep, input_shape),
num_classes=output_shape)
fix_weights_generator = keras.layers.SimpleRNNCell(output_shape)
fix_weights_generator.build((None, input_shape))
weights = fix_weights_generator.get_weights()
with self.session(graph=ops_lib.Graph()) as sess:
inputs = array_ops.placeholder(
dtypes.float32, shape=(None, timestep, input_shape))
cell = keras.layers.SimpleRNNCell(output_shape)
tf_out, tf_state = rnn.dynamic_rnn(
cell, inputs, dtype=dtypes.float32)
cell.set_weights(weights)
[tf_out, tf_state] = sess.run([tf_out, tf_state], {inputs: x_train})
with self.session(graph=ops_lib.Graph()) as sess:
k_input = keras.Input(shape=(timestep, input_shape),
dtype=dtypes.float32)
cell = keras.layers.SimpleRNNCell(output_shape)
layer = keras.layers.RNN(cell, return_sequences=True, return_state=True)
keras_out = layer(k_input)
cell.set_weights(weights)
k_out, k_state = sess.run(keras_out, {k_input: x_train})
self.assertAllClose(tf_out, k_out)
self.assertAllClose(tf_state, k_state)