当前位置: 首页>>代码示例>>Python>>正文


Python testing_utils.get_small_sequential_mlp函数代码示例

本文整理汇总了Python中tensorflow.python.keras.testing_utils.get_small_sequential_mlp函数的典型用法代码示例。如果您正苦于以下问题:Python get_small_sequential_mlp函数的具体用法?Python get_small_sequential_mlp怎么用?Python get_small_sequential_mlp使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了get_small_sequential_mlp函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _testOptimizersCompatibility

  def _testOptimizersCompatibility(self, opt_v1, opt_v2, test_weights=True):
    np.random.seed(1331)
    with self.cached_session():
      train_samples = 20
      input_dim = 3
      num_classes = 2
      (x, y), _ = testing_utils.get_test_data(
          train_samples=train_samples,
          test_samples=10,
          input_shape=(input_dim,),
          num_classes=num_classes)
      y = keras.utils.to_categorical(y)

      num_hidden = 5
      model_v1 = testing_utils.get_small_sequential_mlp(
          num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim)
      model_v1.compile(opt_v1, loss='categorical_crossentropy', metrics=[])
      model_v1.fit(x, y, batch_size=5, epochs=1)

      model_v2 = testing_utils.get_small_sequential_mlp(
          num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim)
      model_v2.set_weights(model_v1.get_weights())
      model_v2.compile(opt_v2, loss='categorical_crossentropy', metrics=[])
      model_v2._make_train_function()
      if test_weights:
        opt_v2.set_weights(opt_v1.get_weights())

      hist_1 = model_v1.fit(x, y, batch_size=5, epochs=1, shuffle=False)
      hist_2 = model_v2.fit(x, y, batch_size=5, epochs=1, shuffle=False)
      self.assertAllClose(model_v1.get_weights(), model_v2.get_weights(),
                          rtol=1e-5, atol=1e-5)
      self.assertAllClose(hist_1.history['loss'], hist_2.history['loss'],
                          rtol=1e-5, atol=1e-5)
开发者ID:aritratony,项目名称:tensorflow,代码行数:33,代码来源:optimizer_v2_test.py

示例2: testNumericEquivalenceForAmsgrad

  def testNumericEquivalenceForAmsgrad(self):
    np.random.seed(1331)
    with self.cached_session():
      train_samples = 20
      input_dim = 3
      num_classes = 2
      (x, y), _ = testing_utils.get_test_data(
          train_samples=train_samples,
          test_samples=10,
          input_shape=(input_dim,),
          num_classes=num_classes)
      y = keras.utils.to_categorical(y)

      num_hidden = 5
      model_k_v1 = testing_utils.get_small_sequential_mlp(
          num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim)
      model_k_v2 = testing_utils.get_small_sequential_mlp(
          num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim)
      model_k_v2.set_weights(model_k_v1.get_weights())

      opt_k_v1 = optimizers.Adam(amsgrad=True)
      opt_k_v2 = adam.Adam(amsgrad=True)

      model_k_v1.compile(opt_k_v1, loss='categorical_crossentropy', metrics=[])
      model_k_v2.compile(opt_k_v2, loss='categorical_crossentropy', metrics=[])

      hist_k_v1 = model_k_v1.fit(x, y, batch_size=5, epochs=10, shuffle=False)
      hist_k_v2 = model_k_v2.fit(x, y, batch_size=5, epochs=10, shuffle=False)

      self.assertAllClose(model_k_v1.get_weights(), model_k_v2.get_weights())
      self.assertAllClose(opt_k_v1.get_weights(), opt_k_v2.get_weights())
      self.assertAllClose(hist_k_v1.history['loss'], hist_k_v2.history['loss'])
开发者ID:aritratony,项目名称:tensorflow,代码行数:32,代码来源:optimizer_v2_test.py

示例3: test_sequential_nesting

  def test_sequential_nesting(self):
    model = testing_utils.get_small_sequential_mlp(4, 3)
    inner_model = testing_utils.get_small_sequential_mlp(4, 5)
    model.add(inner_model)

    model.compile(loss='mse', optimizer=rmsprop.RMSPropOptimizer(1e-3))
    x = np.random.random((2, 6))
    y = np.random.random((2, 5))
    model.fit(x, y, epochs=1)
开发者ID:clsung,项目名称:tensorflow,代码行数:9,代码来源:sequential_test.py

示例4: get_model

 def get_model():
   if deferred:
     model = testing_utils.get_small_sequential_mlp(10, 4)
   else:
     model = testing_utils.get_small_sequential_mlp(10, 4, input_dim=3)
   model.compile(
       optimizer='rmsprop',
       loss='categorical_crossentropy',
       metrics=['accuracy'])
   return model
开发者ID:gautam1858,项目名称:tensorflow,代码行数:10,代码来源:sequential_test.py

示例5: test_sequential_nesting

  def test_sequential_nesting(self):
    model = testing_utils.get_small_sequential_mlp(4, 3)
    inner_model = testing_utils.get_small_sequential_mlp(4, 5)
    model.add(inner_model)

    model.compile(
        loss='mse',
        optimizer='rmsprop',
        run_eagerly=testing_utils.should_run_eagerly())
    x = np.random.random((2, 6))
    y = np.random.random((2, 5))
    model.fit(x, y, epochs=1)
开发者ID:gautam1858,项目名称:tensorflow,代码行数:12,代码来源:sequential_test.py

示例6: test_sequential_build_deferred

  def test_sequential_build_deferred(self):
    model = testing_utils.get_small_sequential_mlp(4, 5)

    model.build((None, 10))
    self.assertTrue(model.built)
    self.assertEqual(len(model.weights), 4)

    # Test with nested model
    model = testing_utils.get_small_sequential_mlp(4, 3)
    inner_model = testing_utils.get_small_sequential_mlp(4, 5)
    model.add(inner_model)

    model.build((None, 10))
    self.assertTrue(model.built)
    self.assertEqual(len(model.weights), 8)
开发者ID:gautam1858,项目名称:tensorflow,代码行数:15,代码来源:sequential_test.py

示例7: test_Tensorboard_eager

  def test_Tensorboard_eager(self):
    temp_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
    self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True)

    (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
        train_samples=TRAIN_SAMPLES,
        test_samples=TEST_SAMPLES,
        input_shape=(INPUT_DIM,),
        num_classes=NUM_CLASSES)
    y_test = keras.utils.to_categorical(y_test)
    y_train = keras.utils.to_categorical(y_train)

    model = testing_utils.get_small_sequential_mlp(
        num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM)
    model.compile(
        loss='binary_crossentropy',
        optimizer=adam.AdamOptimizer(0.01),
        metrics=['accuracy'])

    cbks = [keras.callbacks.TensorBoard(log_dir=temp_dir)]

    model.fit(
        x_train,
        y_train,
        batch_size=BATCH_SIZE,
        validation_data=(x_test, y_test),
        callbacks=cbks,
        epochs=2,
        verbose=0)

    self.assertTrue(os.path.exists(temp_dir))
开发者ID:rmlarsen,项目名称:tensorflow,代码行数:31,代码来源:callbacks_test.py

示例8: test_TensorBoard_with_ReduceLROnPlateau

  def test_TensorBoard_with_ReduceLROnPlateau(self):
    with self.cached_session():
      temp_dir = self.get_temp_dir()
      self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True)

      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=TRAIN_SAMPLES,
          test_samples=TEST_SAMPLES,
          input_shape=(INPUT_DIM,),
          num_classes=NUM_CLASSES)
      y_test = keras.utils.to_categorical(y_test)
      y_train = keras.utils.to_categorical(y_train)

      model = testing_utils.get_small_sequential_mlp(
          num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM)
      model.compile(
          loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy'])

      cbks = [
          keras.callbacks.ReduceLROnPlateau(
              monitor='val_loss', factor=0.5, patience=4, verbose=1),
          keras.callbacks.TensorBoard(log_dir=temp_dir)
      ]

      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=2,
          verbose=0)

      assert os.path.exists(temp_dir)
开发者ID:rmlarsen,项目名称:tensorflow,代码行数:34,代码来源:callbacks_test.py

示例9: test_EarlyStopping_with_baseline

  def test_EarlyStopping_with_baseline(self):
    with self.cached_session():
      np.random.seed(1337)
      baseline = 0.5
      (data, labels), _ = testing_utils.get_test_data(
          train_samples=100,
          test_samples=50,
          input_shape=(1,),
          num_classes=NUM_CLASSES)
      model = testing_utils.get_small_sequential_mlp(
          num_hidden=1, num_classes=1, input_dim=1)
      model.compile(
          optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy'])

      stopper = keras.callbacks.EarlyStopping(monitor='acc',
                                              baseline=baseline)
      hist = model.fit(data, labels, callbacks=[stopper], verbose=0, epochs=20)
      assert len(hist.epoch) == 1

      patience = 3
      stopper = keras.callbacks.EarlyStopping(monitor='acc',
                                              patience=patience,
                                              baseline=baseline)
      hist = model.fit(data, labels, callbacks=[stopper], verbose=0, epochs=20)
      assert len(hist.epoch) >= patience
开发者ID:rmlarsen,项目名称:tensorflow,代码行数:25,代码来源:callbacks_test.py

示例10: test_evaluate_generator_method

  def test_evaluate_generator_method(self, model_type):
    if model_type == 'sequential':
      model = testing_utils.get_small_sequential_mlp(
          num_hidden=3, num_classes=4, input_dim=2)
    else:
      model = testing_utils.get_small_functional_mlp(
          num_hidden=3, num_classes=4, input_dim=2)
    model.compile(
        loss='mse',
        optimizer='sgd',
        metrics=['mae', metrics_module.CategoricalAccuracy()])
    model.summary()

    model.evaluate_generator(custom_generator(),
                             steps=5,
                             max_queue_size=10,
                             workers=2,
                             verbose=1,
                             use_multiprocessing=True)
    model.evaluate_generator(custom_generator(),
                             steps=5,
                             max_queue_size=10,
                             use_multiprocessing=False)
    model.evaluate_generator(custom_generator(),
                             steps=5,
                             max_queue_size=10,
                             use_multiprocessing=False,
                             workers=0)
开发者ID:bunbutter,项目名称:tensorflow,代码行数:28,代码来源:training_generator_test.py

示例11: test_training_and_eval_methods_on_iterators_single_io

  def test_training_and_eval_methods_on_iterators_single_io(self, model):
    if model == 'functional':
      model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3)
    elif model == 'subclass':
      model = testing_utils.get_small_sequential_mlp(1, 4)
    optimizer = RMSPropOptimizer(learning_rate=0.001)
    loss = 'mse'
    metrics = ['mae', metrics_module.CategoricalAccuracy()]
    model.compile(optimizer, loss, metrics=metrics)

    inputs = np.zeros((10, 3))
    targets = np.zeros((10, 4))
    dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
    dataset = dataset.repeat(100)
    dataset = dataset.batch(10)
    iterator = dataset.make_one_shot_iterator()

    model.fit(iterator, epochs=1, steps_per_epoch=2, verbose=1)
    model.evaluate(iterator, steps=2, verbose=1)
    model.predict(iterator, steps=2)

    # Test with validation data
    model.fit(iterator,
              epochs=1, steps_per_epoch=2, verbose=0,
              validation_data=iterator, validation_steps=2)
    # Test with validation split
    with self.assertRaisesRegexp(
        ValueError, '`validation_split` argument is not supported '
        'when input `x` is a dataset or a dataset iterator'):
      model.fit(iterator,
                epochs=1, steps_per_epoch=2, verbose=0,
                validation_split=0.5, validation_steps=2)

    # Test with sample weight.
    sample_weight = np.random.random((10,))
    with self.assertRaisesRegexp(
        ValueError, '`sample_weight` argument is not supported '
        'when input `x` is a dataset or a dataset iterator'):
      model.fit(
          iterator,
          epochs=1,
          steps_per_epoch=2,
          verbose=0,
          sample_weight=sample_weight)

    # Test invalid usage
    with self.assertRaisesRegexp(ValueError,
                                 'you should not specify a target'):
      model.fit(iterator, iterator,
                epochs=1, steps_per_epoch=2, verbose=0)

    with self.assertRaisesRegexp(
        ValueError, 'you should specify the `steps_per_epoch` argument'):
      model.fit(iterator, epochs=1, verbose=0)
    with self.assertRaisesRegexp(ValueError,
                                 'you should specify the `steps` argument'):
      model.evaluate(iterator, verbose=0)
    with self.assertRaisesRegexp(ValueError,
                                 'you should specify the `steps` argument'):
      model.predict(iterator, verbose=0)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:60,代码来源:training_dataset_test.py

示例12: test_sequential_deferred_build_serialization

  def test_sequential_deferred_build_serialization(self):
    num_hidden = 5
    input_dim = 3
    batch_size = 5
    num_classes = 2

    model = testing_utils.get_small_sequential_mlp(num_hidden, num_classes)
    model.compile(
        loss='mse',
        optimizer='rmsprop',
        metrics=[keras.metrics.CategoricalAccuracy()],
        run_eagerly=testing_utils.should_run_eagerly())
    self.assertFalse(model.built)

    x = np.random.random((batch_size, input_dim))
    y = np.random.random((batch_size, num_classes))
    model.train_on_batch(x, y)
    self.assertTrue(model.built)

    config = model.get_config()
    self.assertIn('build_input_shape', config)

    new_model = keras.models.Sequential.from_config(config)
    self.assertEqual(len(new_model.layers), 2)
    self.assertEqual(len(new_model.weights), 4)
开发者ID:gautam1858,项目名称:tensorflow,代码行数:25,代码来源:sequential_test.py

示例13: test_sequential_deferred_build_with_dataset_iterators

  def test_sequential_deferred_build_with_dataset_iterators(self):
    num_hidden = 5
    input_dim = 3
    num_classes = 2
    num_samples = 50
    steps_per_epoch = 10

    model = testing_utils.get_small_sequential_mlp(num_hidden, num_classes)
    model.compile(
        loss='mse',
        optimizer='rmsprop',
        metrics=[keras.metrics.CategoricalAccuracy()],
        run_eagerly=testing_utils.should_run_eagerly())
    self.assertEqual(len(model.layers), 2)
    self.assertEqual(len(model.weights), 0)
    self.assertFalse(model.built)

    x = array_ops.ones((num_samples, input_dim))
    y = array_ops.zeros((num_samples, num_classes))
    dataset = dataset_ops.Dataset.from_tensor_slices((x, y))
    dataset = dataset.repeat(100)
    dataset = dataset.batch(10)
    iterator = dataset_ops.make_one_shot_iterator(dataset)

    model.fit(iterator, epochs=1, steps_per_epoch=steps_per_epoch)
    self.assertTrue(model.built)
    self.assertEqual(len(model.weights), 2 * 2)
    self.assertFalse(model._is_graph_network)
开发者ID:gautam1858,项目名称:tensorflow,代码行数:28,代码来源:sequential_test.py

示例14: test_sequential_pop

  def test_sequential_pop(self):
    num_hidden = 5
    input_dim = 3
    batch_size = 5
    num_classes = 2

    model = testing_utils.get_small_sequential_mlp(
        num_hidden, num_classes, input_dim)
    model.compile(loss='mse', optimizer=rmsprop.RMSPropOptimizer(1e-3))
    x = np.random.random((batch_size, input_dim))
    y = np.random.random((batch_size, num_classes))
    model.fit(x, y, epochs=1)
    model.pop()
    self.assertEqual(len(model.layers), 1)
    self.assertEqual(model.output_shape, (None, num_hidden))
    model.compile(loss='mse', optimizer=rmsprop.RMSPropOptimizer(1e-3))
    y = np.random.random((batch_size, num_hidden))
    model.fit(x, y, epochs=1)

    # Test popping single-layer model
    model = keras.models.Sequential()
    model.add(keras.layers.Dense(num_hidden, input_dim=input_dim))
    model.pop()
    self.assertEqual(model.layers, [])
    self.assertEqual(model.outputs, None)

    # Invalid use case
    model = keras.models.Sequential()
    with self.assertRaises(TypeError):
      model.pop()
开发者ID:clsung,项目名称:tensorflow,代码行数:30,代码来源:sequential_test.py

示例15: testOptimizerWithCallableVarList

  def testOptimizerWithCallableVarList(self):
    train_samples = 20
    input_dim = 1
    num_classes = 2
    (x, y), _ = testing_utils.get_test_data(
        train_samples=train_samples,
        test_samples=10,
        input_shape=(input_dim,),
        num_classes=num_classes)
    y = keras.utils.to_categorical(y)

    num_hidden = 1
    model = testing_utils.get_small_sequential_mlp(
        num_hidden=num_hidden, num_classes=num_classes)
    opt = adam.Adam()

    loss = lambda: losses.mean_squared_error(model(x), y)
    var_list = lambda: model.trainable_weights

    with self.assertRaisesRegexp(
        ValueError, 'Weights for model .* have not yet been created'):
      var_list()
    train_op = opt.minimize(loss, var_list)
    if not context.executing_eagerly():
      self.evaluate(variables.global_variables_initializer())
      self.assertEqual(
          [[0.]], self.evaluate(opt.get_slot(var_list()[0], 'm')))
      self.evaluate(train_op)
    self.assertNotEqual(
        [[0.]], self.evaluate(opt.get_slot(var_list()[0], 'm')))
    self.assertLen(var_list(), 4)
开发者ID:aritratony,项目名称:tensorflow,代码行数:31,代码来源:optimizer_v2_test.py


注:本文中的tensorflow.python.keras.testing_utils.get_small_sequential_mlp函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。