当前位置: 首页>>代码示例>>Python>>正文


Python testing_utils.get_test_data函数代码示例

本文整理汇总了Python中tensorflow.python.keras._impl.keras.testing_utils.get_test_data函数的典型用法代码示例。如果您正苦于以下问题:Python get_test_data函数的具体用法?Python get_test_data怎么用?Python get_test_data使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了get_test_data函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_multi_inputs_multi_outputs

  def test_multi_inputs_multi_outputs(self):
    np.random.seed(1337)
    (a_train, c_train), (a_test, c_test) = testing_utils.get_test_data(
        train_samples=200, test_samples=100, input_shape=(32,), num_classes=3)
    (b_train, d_train), (b_test, d_test) = testing_utils.get_test_data(
        train_samples=200, test_samples=100, input_shape=(32,), num_classes=2)
    c_train = keras.utils.to_categorical(c_train)
    c_test = keras.utils.to_categorical(c_test)
    d_train = keras.utils.to_categorical(d_train)
    d_test = keras.utils.to_categorical(d_test)

    def train_input_fn():
      input_dict = {
          'input_a':
              ops.convert_to_tensor(
                  np.array(a_train, dtype=np.float32), dtype=dtypes.float32),
          'input_b':
              ops.convert_to_tensor(
                  np.array(b_train, dtype=np.float32), dtype=dtypes.float32)
      }
      output_dict = {
          'dense_2':
              ops.convert_to_tensor(
                  np.array(c_train, dtype=np.float32), dtype=dtypes.float32),
          'dense_3':
              ops.convert_to_tensor(
                  np.array(d_train, dtype=np.float32), dtype=dtypes.float32)
      }
      return input_dict, output_dict

    def evaluate_input_fn():
      input_dict = {
          'input_a':
              ops.convert_to_tensor(
                  np.array(a_test, dtype=np.float32), dtype=dtypes.float32),
          'input_b':
              ops.convert_to_tensor(
                  np.array(b_test, dtype=np.float32), dtype=dtypes.float32)
      }
      output_dict = {
          'dense_2':
              ops.convert_to_tensor(
                  np.array(c_test, dtype=np.float32), dtype=dtypes.float32),
          'dense_3':
              ops.convert_to_tensor(
                  np.array(d_test, dtype=np.float32), dtype=dtypes.float32)
      }
      return input_dict, output_dict

    with self.test_session():
      model = multi_inputs_multi_outputs_model()
      est_keras = keras.estimator.model_to_estimator(
          keras_model=model, model_dir=tempfile.mkdtemp(dir=self._base_dir))
      est_keras.train(input_fn=train_input_fn, steps=200 * 10 / 16)
      eval_results = est_keras.evaluate(input_fn=evaluate_input_fn, steps=1)
      self.assertGreater(eval_results['accuracy_dense_2'], 0.5)
      self.assertGreater(eval_results['accuracy_dense_3'], 0.5)
开发者ID:Crazyonxh,项目名称:tensorflow,代码行数:57,代码来源:estimator_test.py

示例2: get_resource_for_simple_model

def get_resource_for_simple_model(is_sequential, is_evaluate):
  model = simple_sequential_model(
  ) if is_sequential else simple_functional_model()
  if is_sequential:
    model.build()
  input_name = model.input_names[0]
  np.random.seed(_RANDOM_SEED)
  (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
      train_samples=_TRAIN_SIZE,
      test_samples=50,
      input_shape=_INPUT_SIZE,
      num_classes=_NUM_CLASS)
  y_train = keras.utils.to_categorical(y_train)
  y_test = keras.utils.to_categorical(y_test)

  train_input_fn = numpy_io.numpy_input_fn(
      x={input_name: x_train},
      y=y_train,
      shuffle=False,
      num_epochs=None,
      batch_size=16)

  evaluate_input_fn = numpy_io.numpy_input_fn(
      x={input_name: x_test}, y=y_test, num_epochs=1, shuffle=False)

  predict_input_fn = numpy_io.numpy_input_fn(
      x={input_name: x_test}, num_epochs=1, shuffle=False)

  inference_input_fn = evaluate_input_fn if is_evaluate else predict_input_fn

  return model, (x_train, y_train), (x_test,
                                     y_test), train_input_fn, inference_input_fn
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:32,代码来源:estimator_test.py

示例3: test_invalid_loss_or_metrics

  def test_invalid_loss_or_metrics(self):
    num_classes = 5
    train_samples = 1000
    test_samples = 1000
    input_dim = 5

    model = keras.models.Sequential()
    model.add(keras.layers.Dense(10, input_shape=(input_dim,)))
    model.add(keras.layers.Activation('relu'))
    model.add(keras.layers.Dense(num_classes))
    model.add(keras.layers.Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=RMSPropOptimizer(learning_rate=0.001))
    np.random.seed(1337)

    (x_train, y_train), (_, _) = testing_utils.get_test_data(
        train_samples=train_samples,
        test_samples=test_samples,
        input_shape=(input_dim,),
        num_classes=num_classes)

    with self.assertRaises(ValueError):
      model.fit(x_train, np.concatenate([y_train, y_train], axis=-1))

    with self.assertRaises(TypeError):
      model.compile(loss='categorical_crossentropy',
                    optimizer=RMSPropOptimizer(learning_rate=0.001),
                    metrics=set(0))

    with self.assertRaises(ValueError):
      model.compile(loss=None,
                    optimizer='rms')
开发者ID:moses-sun,项目名称:tensorflow,代码行数:32,代码来源:training_eager_test.py

示例4: test_LearningRateScheduler

  def test_LearningRateScheduler(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=TRAIN_SAMPLES,
          test_samples=TEST_SAMPLES,
          input_shape=(INPUT_DIM,),
          num_classes=NUM_CLASSES)
      y_test = keras.utils.to_categorical(y_test)
      y_train = keras.utils.to_categorical(y_train)
      model = keras.models.Sequential()
      model.add(
          keras.layers.Dense(
              NUM_HIDDEN, input_dim=INPUT_DIM, activation='relu'))
      model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax'))
      model.compile(
          loss='categorical_crossentropy',
          optimizer='sgd',
          metrics=['accuracy'])

      cbks = [keras.callbacks.LearningRateScheduler(lambda x: 1. / (1. + x))]
      model.fit(
          x_train,
          y_train,
          batch_size=BATCH_SIZE,
          validation_data=(x_test, y_test),
          callbacks=cbks,
          epochs=5,
          verbose=0)
      assert (float(keras.backend.get_value(model.optimizer.lr)) - 0.2
             ) < keras.backend.epsilon()
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:31,代码来源:callbacks_test.py

示例5: _test_optimizer

def _test_optimizer(optimizer, target=0.75):
  np.random.seed(1337)
  (x_train, y_train), _ = testing_utils.get_test_data(train_samples=1000,
                                                      test_samples=200,
                                                      input_shape=(10,),
                                                      num_classes=2)
  y_train = keras.utils.to_categorical(y_train)
  model = _get_model(x_train.shape[1], 20, y_train.shape[1])
  model.compile(loss='categorical_crossentropy',
                optimizer=optimizer,
                metrics=['accuracy'])
  history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0)
  assert history.history['acc'][-1] >= target
  config = keras.optimizers.serialize(optimizer)
  optim = keras.optimizers.deserialize(config)
  new_config = keras.optimizers.serialize(optim)
  new_config['class_name'] = new_config['class_name'].lower()
  assert config == new_config

  # Test constraints.
  model = keras.models.Sequential()
  dense = keras.layers.Dense(10,
                             input_shape=(x_train.shape[1],),
                             kernel_constraint=lambda x: 0. * x + 1.,
                             bias_constraint=lambda x: 0. * x + 2.,
                             activation='relu')
  model.add(dense)
  model.add(keras.layers.Dense(y_train.shape[1], activation='softmax'))
  model.compile(loss='categorical_crossentropy',
                optimizer=optimizer,
                metrics=['accuracy'])
  model.train_on_batch(x_train[:10], y_train[:10])
  kernel, bias = dense.get_weights()
  np.testing.assert_allclose(kernel, 1., atol=1e-3)
  np.testing.assert_allclose(bias, 2., atol=1e-3)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:35,代码来源:optimizers_test.py

示例6: test_video_classification_functional

  def test_video_classification_functional(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=200,
          test_samples=100,
          input_shape=(4, 8, 8, 3),
          num_classes=3)
      y_train = keras.utils.to_categorical(y_train)
      y_test = keras.utils.to_categorical(y_test)

      inputs = keras.layers.Input(shape=x_train.shape[1:])
      x = keras.layers.TimeDistributed(
          keras.layers.Conv2D(4, 3, activation='relu'))(inputs)
      x = keras.layers.BatchNormalization()(x)
      x = keras.layers.TimeDistributed(keras.layers.GlobalMaxPooling2D())(x)
      x = keras.layers.Conv1D(8, 3, activation='relu')(x)
      x = keras.layers.Flatten()(x)
      outputs = keras.layers.Dense(y_train.shape[-1], activation='softmax')(x)

      model = keras.models.Model(inputs, outputs)
      model.compile(loss='categorical_crossentropy',
                    optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.8),
                    metrics=['accuracy'])
      history = model.fit(x_train, y_train, epochs=10, batch_size=16,
                          validation_data=(x_test, y_test),
                          verbose=2)
      self.assertGreater(history.history['val_acc'][-1], 0.70)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:28,代码来源:integration_test.py

示例7: test_vector_classification_declarative

  def test_vector_classification_declarative(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=200,
          test_samples=100,
          input_shape=(10,),
          num_classes=2)
      y_train = keras.utils.to_categorical(y_train)
      y_test = keras.utils.to_categorical(y_test)

      model = keras.models.Sequential([
          keras.layers.Dense(16,
                             activation='relu',
                             input_shape=x_train.shape[1:]),
          keras.layers.Dropout(0.1),
          keras.layers.Dense(y_train.shape[-1], activation='softmax')
      ])
      model.compile(loss='categorical_crossentropy',
                    optimizer='rmsprop',
                    metrics=['accuracy'])
      history = model.fit(x_train, y_train, epochs=10, batch_size=16,
                          validation_data=(x_test, y_test),
                          verbose=2)
      self.assertGreater(history.history['val_acc'][-1], 0.85)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:25,代码来源:integration_test.py

示例8: test_vector_classification_shared_model

  def test_vector_classification_shared_model(self):
    # Test that functional models that feature internal updates
    # and internal losses can be shared.
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=200,
          test_samples=100,
          input_shape=(10,),
          num_classes=2)
      y_train = keras.utils.to_categorical(y_train)
      y_test = keras.utils.to_categorical(y_test)

      inputs = keras.layers.Input(x_train.shape[1:])
      x = keras.layers.Dense(16,
                             activation='relu',
                             kernel_regularizer=keras.regularizers.l2(1e-5),
                             bias_regularizer=keras.regularizers.l2(1e-5),
                             input_shape=x_train.shape[1:])(inputs)
      x = keras.layers.BatchNormalization()(x)
      base_model = keras.models.Model(inputs, x)

      x = keras.layers.Input(x_train.shape[1:])
      y = base_model(x)
      y = keras.layers.Dense(y_train.shape[-1], activation='softmax')(y)
      model = keras.models.Model(x, y)
      model.compile(loss='categorical_crossentropy',
                    optimizer='rmsprop',
                    metrics=['accuracy'])
      history = model.fit(x_train, y_train, epochs=10, batch_size=16,
                          validation_data=(x_test, y_test),
                          verbose=2)
      self.assertGreater(history.history['val_acc'][-1], 0.85)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:33,代码来源:integration_test.py

示例9: test_TerminateOnNaN

  def test_TerminateOnNaN(self):
    np.random.seed(1337)
    (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
        train_samples=TRAIN_SAMPLES,
        test_samples=TEST_SAMPLES,
        input_shape=(INPUT_DIM,),
        num_classes=NUM_CLASSES)

    y_test = keras.utils.to_categorical(y_test)
    y_train = keras.utils.to_categorical(y_train)
    cbks = [keras.callbacks.TerminateOnNaN()]
    model = keras.models.Sequential()
    initializer = keras.initializers.Constant(value=1e5)
    for _ in range(5):
      model.add(keras.layers.Dense(2,
                                   input_dim=INPUT_DIM,
                                   activation='relu',
                                   kernel_initializer=initializer))
    model.add(keras.layers.Dense(NUM_CLASSES))
    model.compile(loss='mean_squared_error',
                  optimizer='rmsprop')

    history = model.fit(x_train, y_train, batch_size=BATCH_SIZE,
                        validation_data=(x_test, y_test),
                        callbacks=cbks, epochs=20)
    loss = history.history['loss']
    assert len(loss) == 1
    assert loss[0] == np.inf
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:28,代码来源:callbacks_test.py

示例10: test_image_classification_declarative

  def test_image_classification_declarative(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
          train_samples=200,
          test_samples=100,
          input_shape=(8, 8, 3),
          num_classes=2)
      y_train = keras.utils.to_categorical(y_train)
      y_test = keras.utils.to_categorical(y_test)

      model = keras.models.Sequential()
      model.add(keras.layers.Conv2D(
          8, 3,
          activation='relu',
          input_shape=x_train.shape[1:]))
      model.add(keras.layers.BatchNormalization())
      model.add(keras.layers.Conv2D(
          8, 3,
          padding='same',
          activation='relu'))
      model.add(keras.layers.GlobalMaxPooling2D())
      model.add(keras.layers.Dense(y_train.shape[-1], activation='softmax'))
      model.compile(loss='categorical_crossentropy',
                    optimizer='adam',
                    metrics=['accuracy'])
      history = model.fit(x_train, y_train, epochs=10, batch_size=16,
                          validation_data=(x_test, y_test),
                          verbose=2)
      self.assertGreater(history.history['val_acc'][-1], 0.85)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:30,代码来源:integration_test.py

示例11: test_invalid_ionames_error

  def test_invalid_ionames_error(self):
    (x_train, y_train), (_, _) = testing_utils.get_test_data(
        train_samples=_TRAIN_SIZE,
        test_samples=100,
        input_shape=(10,),
        num_classes=2)
    y_train = keras.utils.to_categorical(y_train)

    def invald_input_name_input_fn():
      input_dict = {'invalid_input_name': x_train}
      return input_dict, y_train

    def invald_output_name_input_fn():
      input_dict = {'input_1': x_train}
      output_dict = {'invalid_output_name': y_train}
      return input_dict, output_dict

    model = simple_functional_model()
    model.compile(
        loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    est_keras = keras.estimator.model_to_estimator(
        keras_model=model, config=self._config)

    with self.test_session():
      with self.assertRaises(ValueError):
        est_keras.train(input_fn=invald_input_name_input_fn, steps=100)

      with self.assertRaises(ValueError):
        est_keras.train(input_fn=invald_output_name_input_fn, steps=100)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:29,代码来源:estimator_test.py

示例12: test_image_classification_sequential

  def test_image_classification_sequential(self):
    with self.test_session():
      np.random.seed(1337)
      (x_train, y_train), _ = testing_utils.get_test_data(
          train_samples=100,
          test_samples=0,
          input_shape=(12, 12, 3),
          num_classes=2)
      y_train = keras.utils.to_categorical(y_train)

      model = keras.models.Sequential()
      model.add(keras.layers.Conv2D(
          4, 3,
          padding='same',
          activation='relu',
          input_shape=x_train.shape[1:]))
      model.add(keras.layers.Conv2D(
          8, 3,
          padding='same',
          activation='relu'))
      model.add(keras.layers.Conv2D(
          16, 3,
          padding='same',
          activation='relu'))
      model.add(keras.layers.Flatten())
      model.add(keras.layers.Dense(y_train.shape[-1], activation='softmax'))
      model.compile(loss='categorical_crossentropy',
                    optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.8),
                    metrics=['accuracy'])
      history = model.fit(x_train, y_train, epochs=10, batch_size=16,
                          validation_data=(x_train, y_train),
                          verbose=2)
      self.assertGreater(history.history['val_acc'][-1], 0.7)
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:33,代码来源:integration_test.py

示例13: test_temporal_sample_weights

  def test_temporal_sample_weights(self):
    num_classes = 5
    weighted_class = 3
    train_samples = 1000
    test_samples = 1000
    input_dim = 5
    timesteps = 3

    model = keras.models.Sequential()
    model.add(
        keras.layers.TimeDistributed(
            keras.layers.Dense(num_classes),
            input_shape=(timesteps, input_dim)))
    model.add(keras.layers.Activation('softmax'))

    np.random.seed(1337)
    (_, y_train), _ = testing_utils.get_test_data(
        train_samples=train_samples,
        test_samples=test_samples,
        input_shape=(input_dim,),
        num_classes=num_classes)
    int_y_train = y_train.copy()
    # convert class vectors to binary class matrices
    y_train = keras.utils.to_categorical(y_train, num_classes)

    class_weight = dict([(i, 1.) for i in range(num_classes)])
    class_weight[weighted_class] = 2.

    sample_weight = np.ones((y_train.shape[0]))
    sample_weight[int_y_train == weighted_class] = 2.
    with self.assertRaises(ValueError):
      model.compile(
          loss='binary_crossentropy',
          optimizer=RMSPropOptimizer(learning_rate=0.001),
          sample_weight_mode='temporal')
开发者ID:moses-sun,项目名称:tensorflow,代码行数:35,代码来源:training_eager_test.py

示例14: test_sample_weights

  def test_sample_weights(self):
    num_classes = 5
    batch_size = 5
    epochs = 5
    weighted_class = 3
    train_samples = 3000
    test_samples = 3000
    input_dim = 5

    model = keras.models.Sequential()
    model.add(keras.layers.Dense(10, input_shape=(input_dim,)))
    model.add(keras.layers.Activation('relu'))
    model.add(keras.layers.Dense(num_classes))
    model.add(keras.layers.Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=RMSPropOptimizer(learning_rate=0.001))

    np.random.seed(43)
    (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
        train_samples=train_samples,
        test_samples=test_samples,
        input_shape=(input_dim,),
        num_classes=num_classes)
    int_y_test = y_test.copy()
    int_y_train = y_train.copy()
    # convert class vectors to binary class matrices
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)
    test_ids = np.where(int_y_test == np.array(weighted_class))[0]

    class_weight = dict([(i, 1.) for i in range(num_classes)])
    class_weight[weighted_class] = 2.

    sample_weight = np.ones((y_train.shape[0]))
    sample_weight[int_y_train == weighted_class] = 2.

    model.fit(
        x_train,
        y_train,
        batch_size=batch_size,
        epochs=epochs // 3,
        verbose=0,
        sample_weight=sample_weight)
    model.fit(
        x_train,
        y_train,
        batch_size=batch_size,
        epochs=epochs // 3,
        verbose=0,
        sample_weight=sample_weight,
        validation_split=0.1)
    model.train_on_batch(
        x_train[:batch_size],
        y_train[:batch_size],
        sample_weight=sample_weight[:batch_size])
    model.test_on_batch(
        x_train[:batch_size],
        y_train[:batch_size],
        sample_weight=sample_weight[:batch_size])
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:59,代码来源:training_eager_test.py

示例15: test_multi_inputs_multi_outputs

  def test_multi_inputs_multi_outputs(self):
    np.random.seed(_RANDOM_SEED)
    (a_train, c_train), (a_test, c_test) = testing_utils.get_test_data(
        train_samples=_TRAIN_SIZE,
        test_samples=50,
        input_shape=(16,),
        num_classes=3)
    np.random.seed(_RANDOM_SEED)
    (b_train, d_train), (b_test, d_test) = testing_utils.get_test_data(
        train_samples=_TRAIN_SIZE,
        test_samples=50,
        input_shape=(16,),
        num_classes=2)
    np.random.seed(_RANDOM_SEED)
    (input_m_train, _), (input_m_test, _) = testing_utils.get_test_data(
        train_samples=_TRAIN_SIZE,
        test_samples=50,
        input_shape=(8,),
        num_classes=2)

    c_train = keras.utils.to_categorical(c_train)
    c_test = keras.utils.to_categorical(c_test)
    d_train = keras.utils.to_categorical(d_train)
    d_test = keras.utils.to_categorical(d_test)

    def train_input_fn():
      input_dict = {'input_a': a_train, 'input_b': b_train,
                    'input_m': input_m_train > 0}
      output_dict = {'dense_2': c_train, 'dense_3': d_train}
      return input_dict, output_dict

    def eval_input_fn():
      input_dict = {'input_a': a_test, 'input_b': b_test,
                    'input_m': input_m_test > 0}
      output_dict = {'dense_2': c_test, 'dense_3': d_test}
      return input_dict, output_dict

    with self.test_session():
      model = multi_inputs_multi_outputs_model()
      est_keras = keras.estimator.model_to_estimator(
          keras_model=model, config=self._config)
      before_eval_results = est_keras.evaluate(input_fn=eval_input_fn, steps=1)
      est_keras.train(input_fn=train_input_fn, steps=_TRAIN_SIZE / 16)
      after_eval_results = est_keras.evaluate(input_fn=eval_input_fn, steps=1)
      self.assertLess(after_eval_results['loss'], before_eval_results['loss'])
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:45,代码来源:estimator_test.py


注:本文中的tensorflow.python.keras._impl.keras.testing_utils.get_test_data函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。