本文整理汇总了Python中tensorflow.python.framework.tensor_shape.vector函数的典型用法代码示例。如果您正苦于以下问题:Python vector函数的具体用法?Python vector怎么用?Python vector使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了vector函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testBroadcast_one_dimension
def testBroadcast_one_dimension(self):
s1 = tensor_shape.vector(5)
s2 = tensor_shape.vector(7)
unknown = tensor_shape.unknown_shape()
scalar = tensor_shape.scalar()
expanded_scalar = tensor_shape.TensorShape([1])
# Tensors with same shape should have the same broadcast result.
for shape in (s1, s2, unknown, scalar, expanded_scalar):
self._assert_broadcast(expected=shape, shape1=shape, shape2=shape)
# [] and [1] act like identity.
self._assert_broadcast(expected=s1, shape1=s1, shape2=scalar)
self._assert_broadcast(expected=s2, shape1=s2, shape2=scalar)
self._assert_broadcast(expected=s1, shape1=s1, shape2=expanded_scalar)
self._assert_broadcast(expected=s2, shape1=s2, shape2=expanded_scalar)
self._assert_broadcast(expected=unknown, shape1=s1, shape2=unknown)
self._assert_broadcast(expected=unknown, shape1=s2, shape2=unknown)
self._assert_broadcast(
expected=expanded_scalar, shape1=scalar, shape2=expanded_scalar)
self._assert_incompatible_broadcast(shape1=s1, shape2=s2)
示例2: _TensorArraySplitShape
def _TensorArraySplitShape(op):
# handle, value, lengths, flow_in
op.inputs[0].get_shape().merge_with(tensor_shape.vector(2))
op.inputs[2].get_shape().merge_with(tensor_shape.vector(None))
op.inputs[3].get_shape().merge_with(tensor_shape.scalar())
# flow_out
return [tensor_shape.scalar()]
示例3: testShapes
def testShapes(self):
fdef = self._build_function_def()
g = function_def_to_graph.function_def_to_graph(fdef)
self.assertIsNone(g.inputs[0].shape.dims) # Unknown dims.
self.assertIsNone(g.inputs[1].shape.dims) # Unknown dims.
self.assertIsNone(g.outputs[0].shape.dims) # Unknown dims.
self.assertIsNone(g.outputs[1].shape.dims) # Unknown dims.
g = function_def_to_graph.function_def_to_graph(
fdef, input_shapes=[tensor_shape.vector(5),
tensor_shape.vector(5)])
self.assertSequenceEqual(g.inputs[0].shape.dims, [5])
self.assertSequenceEqual(g.inputs[1].shape.dims, [5])
self.assertSequenceEqual(g.outputs[0].shape.dims, [5])
self.assertSequenceEqual(g.outputs[1].shape.dims, [5])
g = function_def_to_graph.function_def_to_graph(
fdef, input_shapes=[None, tensor_shape.matrix(5, 7)])
self.assertIsNone(g.inputs[0].shape.dims)
self.assertSequenceEqual(g.inputs[1].shape.dims, [5, 7])
self.assertSequenceEqual(g.outputs[0].shape.dims, [5, 7])
self.assertSequenceEqual(g.outputs[1].shape.dims, [5, 7])
# Should raise a ValueError if the length of input_shapes does not match
# the number of input args in FunctionDef.signature.input_arg.
with self.assertRaises(ValueError):
g = function_def_to_graph.function_def_to_graph(
fdef, input_shapes=[tensor_shape.matrix(5, 7)])
示例4: testBroadcast_one_dimension
def testBroadcast_one_dimension(self):
s1 = tensor_shape.vector(5)
s2 = tensor_shape.vector(7)
unknown = tensor_shape.unknown_shape()
scalar = tensor_shape.scalar()
expanded_scalar = tensor_shape.TensorShape([1])
# Tensors with same shape should have the same broadcast result.
self.assertEqual(s1, common_shapes.broadcast_shape(s1, s1))
self.assertEqual(s2, common_shapes.broadcast_shape(s2, s2))
self.assertEqual(unknown, common_shapes.broadcast_shape(unknown, unknown))
self.assertEqual(scalar, common_shapes.broadcast_shape(scalar, scalar))
self.assertEqual(expanded_scalar, common_shapes.broadcast_shape(
expanded_scalar, expanded_scalar))
# [] acts like an identity.
self.assertEqual(s1, common_shapes.broadcast_shape(s1, scalar))
self.assertEqual(s2, common_shapes.broadcast_shape(s2, scalar))
self.assertEqual(s1, common_shapes.broadcast_shape(s1, expanded_scalar))
self.assertEqual(s2, common_shapes.broadcast_shape(s2, expanded_scalar))
self.assertEqual(unknown, common_shapes.broadcast_shape(s1, unknown))
self.assertEqual(unknown, common_shapes.broadcast_shape(s2, unknown))
self.assertEqual(expanded_scalar, common_shapes.broadcast_shape(
scalar, expanded_scalar))
with self.assertRaises(ValueError):
common_shapes.broadcast_shape(s1, s2)
common_shapes.broadcast_shape(s2, s1)
示例5: _ParseSingleSequenceExampleShape
def _ParseSingleSequenceExampleShape(op):
"""Shape function for the ParseExample op."""
op.inputs[0].get_shape().with_rank(0) # input
# feature_list_dense_missing_assumed_empty
op.inputs[1].get_shape().with_rank(1)
num_context_sparse = op.get_attr("Ncontext_sparse")
num_context_dense = op.get_attr("Ncontext_dense")
num_feature_list_dense = op.get_attr("Nfeature_list_dense")
context_dense_shapes = op.get_attr("context_dense_shapes")
num_feature_list_sparse = op.get_attr("Nfeature_list_sparse")
feature_list_dense_shapes = op.get_attr("feature_list_dense_shapes")
context_sparse_index_shapes = [tensor_shape.matrix(None, 1) for _ in range(num_context_sparse)]
context_sparse_value_shapes = [tensor_shape.vector(None) for _ in range(num_context_sparse)]
context_sparse_shape_shapes = [tensor_shape.vector(1) for _ in range(num_context_sparse)]
context_dense_shapes = [tensor_shape.TensorShape(dense_shape) for dense_shape in context_dense_shapes]
feature_list_sparse_index_shapes = [tensor_shape.matrix(None, 2) for _ in range(num_feature_list_sparse)]
feature_list_sparse_value_shapes = [tensor_shape.vector(None) for _ in range(num_feature_list_sparse)]
feature_list_sparse_shape_shapes = [tensor_shape.vector(2) for _ in range(num_feature_list_sparse)]
feature_list_dense_shapes = [
tensor_shape.vector(None).concatenate(dense_shape) for dense_shape in feature_list_dense_shapes
]
assert num_context_dense == len(context_dense_shapes)
assert num_feature_list_dense == len(feature_list_dense_shapes)
return (
context_sparse_index_shapes
+ context_sparse_value_shapes
+ context_sparse_shape_shapes
+ context_dense_shapes
+ feature_list_sparse_index_shapes
+ feature_list_sparse_value_shapes
+ feature_list_sparse_shape_shapes
+ feature_list_dense_shapes
)
示例6: _CandidateSamplerShape
def _CandidateSamplerShape(op):
true_classes_shape = op.inputs[0].get_shape().with_rank(2)
batch_size = true_classes_shape[0]
num_sampled = op.get_attr("num_sampled")
num_true = op.get_attr("num_true")
return [tensor_shape.vector(num_sampled),
tensor_shape.matrix(batch_size, num_true),
tensor_shape.vector(num_sampled)]
示例7: _RangeShape
def _RangeShape(op):
start_value = tensor_util.constant_value(op.inputs[0])
limit_value = tensor_util.constant_value(op.inputs[1])
delta_value = tensor_util.constant_value(op.inputs[2])
if start_value is None or limit_value is None or delta_value is None:
return [tensor_shape.vector(None)]
else:
return [tensor_shape.vector((limit_value - start_value + delta_value - 1) // delta_value)]
示例8: _SparseSoftmaxCrossEntropyWithLogitsShape
def _SparseSoftmaxCrossEntropyWithLogitsShape(op):
"""Shape function for SparseSoftmaxCrossEntropyWithLogits op."""
logits_shape = op.inputs[0].get_shape()
input_shape = logits_shape.with_rank(2)
batch_size = input_shape[0]
# labels_shape
op.inputs[1].get_shape().merge_with(tensor_shape.vector(batch_size))
return [tensor_shape.vector(batch_size.value), input_shape]
示例9: _DeserializeSparseShape
def _DeserializeSparseShape(op): # pylint: disable=invalid-name
"""Shape function for DeserializeManySparse op."""
serialized_sparse_shape = op.inputs[0].get_shape().with_rank(2)
serialized_sparse_shape.merge_with(
tensor_shape.TensorShape([None, 3]))
return [tensor_shape.matrix(None, None),
tensor_shape.vector(None),
tensor_shape.vector(None)]
示例10: _SaveSlicesShape
def _SaveSlicesShape(op):
"""Shape function for SaveSlices op."""
# Validate input shapes.
unused_filename = op.inputs[0].get_shape().merge_with(tensor_shape.scalar())
data_count = len(op.inputs) - 3
unused_tensor_names_shape = op.inputs[1].get_shape().merge_with(tensor_shape.vector(data_count))
unused_shapes_and_slices_shape = op.inputs[2].get_shape().merge_with(tensor_shape.vector(data_count))
# TODO(mrry): Attempt to parse the shapes_and_slices values and use
# them to constrain the shape of the remaining inputs.
return []
示例11: _ParseExampleShape
def _ParseExampleShape(op):
"""Shape function for the ParseExample op."""
input_shape = op.inputs[0].get_shape().with_rank(1)
op.inputs[1].get_shape().with_rank(1) # names
num_sparse = op.get_attr("Nsparse")
num_dense = op.get_attr("Ndense")
dense_shapes = op.get_attr("dense_shapes")
sparse_index_shapes = [tensor_shape.matrix(None, 2) for _ in range(num_sparse)]
sparse_value_shapes = [tensor_shape.vector(None) for _ in range(num_sparse)]
sparse_shape_shapes = [tensor_shape.vector(2) for _ in range(num_sparse)]
assert num_dense == len(dense_shapes)
dense_shapes = [input_shape.concatenate(dense_shape) for dense_shape in dense_shapes]
return sparse_index_shapes + sparse_value_shapes + sparse_shape_shapes + dense_shapes
示例12: _CTCGreedyDecoderShape
def _CTCGreedyDecoderShape(op):
"""Shape function for the CTCGreedyDecoder op."""
inputs_shape = op.inputs[0].get_shape().with_rank(3)
sequence_length_shape = op.inputs[1].get_shape().with_rank(1)
# merge batch_size
sequence_length_shape[0].merge_with(inputs_shape[1])
inputs_shape[1].merge_with(sequence_length_shape[0])
batch_size = inputs_shape[1]
# decoded_indices, decoded_values, decoded_shape, log_probability
return [tensor_shape.matrix(None, 2),
tensor_shape.vector(None),
tensor_shape.vector(2),
tensor_shape.matrix(batch_size, 1)]
示例13: testBroadcast_unknown_dims
def testBroadcast_unknown_dims(self):
unknown = tensor_shape.unknown_shape()
shape_0 = tensor_shape.scalar()
shape_1 = tensor_shape.vector(1)
# pylint: disable=invalid-name
shape_U = tensor_shape.vector(None)
shape_1xU = tensor_shape.matrix(1, None)
shape_Ux1 = tensor_shape.matrix(None, 1)
shape_4xU = tensor_shape.matrix(4, None)
shape_Ux4 = tensor_shape.matrix(None, 4)
# pylint: enable=invalid-name
# Tensors with same shape should have the same broadcast result.
for shape in (shape_U, shape_1xU, shape_Ux1, shape_4xU, shape_Ux4):
self._assert_broadcast_with_unknown_dims(
expected=shape, shape1=shape, shape2=shape)
# [] and [1] act like identity.
for identity in (shape_0, shape_1):
for shape in (shape_U, shape_1xU, shape_Ux1, shape_4xU, shape_Ux4):
self._assert_broadcast_with_unknown_dims(
expected=shape, shape1=identity, shape2=shape)
# Unknown in, unknown out.
for shape in (shape_U, shape_1xU, shape_Ux1, shape_4xU, shape_Ux4):
self._assert_broadcast_with_unknown_dims(
expected=unknown, shape1=shape, shape2=unknown)
self._assert_broadcast_with_unknown_dims(
expected=shape_1xU, shape1=shape_U, shape2=shape_1xU)
shape_UxU = tensor_shape.matrix(None, None) # pylint: disable=invalid-name
self._assert_broadcast_with_unknown_dims(
expected=shape_UxU, shape1=shape_U, shape2=shape_Ux1)
self._assert_broadcast_with_unknown_dims(
expected=shape_4xU, shape1=shape_U, shape2=shape_4xU)
self._assert_broadcast_with_unknown_dims(
expected=shape_Ux4, shape1=shape_U, shape2=shape_Ux4)
self._assert_broadcast_with_unknown_dims(
expected=shape_UxU, shape1=shape_1xU, shape2=shape_Ux1)
self._assert_broadcast_with_unknown_dims(
expected=shape_4xU, shape1=shape_1xU, shape2=shape_4xU)
self._assert_broadcast_with_unknown_dims(
expected=shape_Ux4, shape1=shape_1xU, shape2=shape_Ux4)
self._assert_broadcast_with_unknown_dims(
expected=shape_4xU, shape1=shape_Ux1, shape2=shape_4xU)
self._assert_broadcast_with_unknown_dims(
expected=shape_Ux4, shape1=shape_Ux1, shape2=shape_Ux4)
shape_4x4 = tensor_shape.matrix(4, 4)
self._assert_broadcast_with_unknown_dims(
expected=shape_4x4, shape1=shape_4xU, shape2=shape_Ux4)
示例14: sample
def sample(self, n, seed=None, name="sample"):
"""Sample `n` observations from the Uniform Distributions.
Args:
n: `Scalar`, type int32, the number of observations to sample.
seed: Python integer, the random seed.
name: The name to give this op.
Returns:
samples: a `Tensor` of shape `(n,) + self.batch_shape + self.event_shape`
with values of type `self.dtype`.
"""
with ops.name_scope(self.name):
with ops.op_scope([self.a, self.b, n], name):
n = ops.convert_to_tensor(n, name="n")
n_val = tensor_util.constant_value(n)
shape = array_ops.concat(0, [array_ops.pack([n]), self.batch_shape()])
samples = random_ops.random_uniform(shape=shape,
dtype=self.dtype,
seed=seed)
# Provide some hints to shape inference
inferred_shape = tensor_shape.vector(n_val).concatenate(
self.get_batch_shape())
samples.set_shape(inferred_shape)
return (array_ops.expand_dims(self.a, 0) + array_ops.expand_dims(
self.range(), 0) * samples)
示例15: _TransposeShape
def _TransposeShape(op):
"""Shape function for the Transpose op.
This op takes two inputs:
* input: a rank-N tensor of arbitrary shape.
* shuffle: a length-N vector.
Its output is the rank-N tensor computed by permuting the dimensions
of input according to shuffle.
Args:
op: A Transpose op.
Returns:
A single-element list containing the shape of the output.
Raises:
ValueError: If the shapes of input and shuffle are incompatible.
IndexError: If shuffle contains an index that is >= the rank of input.
"""
input_shape = op.inputs[0].get_shape()
transpose_shape = op.inputs[1].get_shape().merge_with(tensor_shape.vector(
input_shape.ndims))
transpose_vec = tensor_util.ConstantValue(op.inputs[1])
if transpose_vec is None:
return [tensor_shape.unknown_shape(ndims=transpose_shape[0].value)]
else:
return [tensor_shape.TensorShape([input_shape[i]
for i in transpose_vec.tolist()])]