当前位置: 首页>>代码示例>>Python>>正文


Python tensor_shape.scalar函数代码示例

本文整理汇总了Python中tensorflow.python.framework.tensor_shape.scalar函数的典型用法代码示例。如果您正苦于以下问题:Python scalar函数的具体用法?Python scalar怎么用?Python scalar使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了scalar函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testReadUpToFromRandomShuffleQueue

 def testReadUpToFromRandomShuffleQueue(self):
   shared_queue = data_flow_ops.RandomShuffleQueue(
       capacity=55,
       min_after_dequeue=28,
       dtypes=[dtypes_lib.string, dtypes_lib.string],
       shapes=[tensor_shape.scalar(), tensor_shape.scalar()])
   self._verify_read_up_to_out(shared_queue)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:7,代码来源:parallel_reader_test.py

示例2: _ShardedFilenameShape

def _ShardedFilenameShape(op):
    """Shape function for ShardedFilename op."""
    # Validate input shapes.
    unused_basename_shape = op.inputs[0].get_shape().merge_with(tensor_shape.scalar())
    unused_shard_shape = op.inputs[1].get_shape().merge_with(tensor_shape.scalar())
    unused_num_shards_shape = op.inputs[2].get_shape().merge_with(tensor_shape.scalar())
    return [tensor_shape.scalar()]
开发者ID:RChandrasekar,项目名称:tensorflow,代码行数:7,代码来源:io_ops.py

示例3: _TensorArrayReadShape

def _TensorArrayReadShape(op):
    # handle, index, flow_in
    op.inputs[0].get_shape().merge_with(tensor_shape.vector(2))
    op.inputs[1].get_shape().merge_with(tensor_shape.scalar())
    op.inputs[2].get_shape().merge_with(tensor_shape.scalar())
    # value
    return [tensor_shape.unknown_shape()]
开发者ID:MISingularity,项目名称:tensorflow,代码行数:7,代码来源:tensor_array_ops.py

示例4: testDeserialize

  def testDeserialize(self):
    with self.test_session() as sess:
      accumulator = stats_accumulator_ops.StatsAccumulator(
          stamp_token=0,
          gradient_shape=tensor_shape.scalar(),
          hessian_shape=tensor_shape.scalar())
      with ops.control_dependencies([accumulator._create_op]):
        # These will be deleted due to deserialize call.
        op1 = accumulator.add(
            stamp_token=0,
            partition_ids=[1, 2],
            feature_ids=[2, 3],
            gradients=[0.1, 0.3],
            hessians=[0.2, 0.4])

      with ops.control_dependencies([op1]):
        deserialize = (accumulator.deserialize(
            stamp_token=2,
            num_updates=3,
            partition_ids=[3, 4],
            feature_ids=[5, 6],
            gradients=[0.4, 0.5],
            hessians=[0.6, 0.7]))
      with ops.control_dependencies([deserialize]):
        num_updates, partition, feature, grads, hessians = accumulator.flush(
            stamp_token=2, next_stamp_token=3)
        num_updates, partition, feature, grads, hessians = sess.run(
            [num_updates, partition, feature, grads, hessians])

      result = _AccumulatorResultToDict(partition, feature, grads,
                                        hessians)
      self.assertEqual(num_updates, 3)
      self.assertEqual(len(result), 2)
      self.assertAllClose(result[(3, 5)], [0.4, 0.6])
      self.assertAllClose(result[(4, 6)], [0.5, 0.7])
开发者ID:1000sprites,项目名称:tensorflow,代码行数:35,代码来源:stats_accumulator_ops_test.py

示例5: _TensorArrayWriteShape

def _TensorArrayWriteShape(op):
    # handle, index, value, flow_in
    op.inputs[0].get_shape().merge_with(tensor_shape.vector(2))
    op.inputs[1].get_shape().merge_with(tensor_shape.scalar())
    op.inputs[3].get_shape().merge_with(tensor_shape.scalar())
    # flow_out
    return [tensor_shape.scalar()]
开发者ID:MISingularity,项目名称:tensorflow,代码行数:7,代码来源:tensor_array_ops.py

示例6: _ReaderRestoreStateShape

def _ReaderRestoreStateShape(op):
  """Shape function for the ReaderBase.Restore op."""
  unused_handle_shape = op.inputs[0].get_shape().merge_with(
      tensor_shape.scalar())
  unused_state_shape = op.inputs[1].get_shape().merge_with(
      tensor_shape.scalar())
  return []
开发者ID:ray2020,项目名称:tensorflow,代码行数:7,代码来源:io_ops.py

示例7: testMultidimensionalAcculumator

  def testMultidimensionalAcculumator(self):
    with self.test_session() as sess:
      accumulator = stats_accumulator_ops.StatsAccumulator(
          stamp_token=0,
          gradient_shape=tensor_shape.scalar(),
          hessian_shape=tensor_shape.scalar())
      with ops.control_dependencies([accumulator._create_op]):
        op1 = accumulator.add(
            stamp_token=0,
            partition_ids=[1, 2, 1],
            feature_ids=[[2, 2], [3, 0], [2, 2]],
            gradients=[0.1, 0.3, 0.8],
            hessians=[0.2, 0.4, -9])
        op2 = accumulator.add(0, [2, 1], [[3, 1], [2, 2]], [0.1, 1], [0.2, -1])

      with ops.control_dependencies([op1, op2]):
        num_updates, partition, bucket_ids, grads, hessians = accumulator.flush(
            stamp_token=0, next_stamp_token=1)
        num_updates, partition, bucket_ids, grads, hessians = sess.run(
            [num_updates, partition, bucket_ids, grads, hessians])

      result = _AccumulatorResultToDict(partition, bucket_ids, grads, hessians)
      self.assertEqual(num_updates, 2)
      self.assertEqual(len(result), 3)
      # Key is partion, bucket, dimension.
      self.assertAllClose(result[(1, 2, 2)], [1.9, -9.8])
      self.assertAllClose(result[(2, 3, 0)], [0.3, 0.4])
      self.assertAllClose(result[(2, 3, 1)], [0.1, 0.2])
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:28,代码来源:stats_accumulator_ops_test.py

示例8: constant_value_as_shape

def constant_value_as_shape(tensor):  # pylint: disable=invalid-name
  """A version of `constant_value()` that returns a `TensorShape`.

  This version should be used when a constant tensor value is
  interpreted as a (possibly partial) shape, e.g. in the shape
  function for `tf.reshape()`. By explicitly requesting a
  `TensorShape` as the return value, it is possible to represent
  unknown dimensions; by contrast, `constant_value()` is
  all-or-nothing.

  Args:
    tensor: The rank-1 Tensor to be evaluated.

  Returns:
    A `TensorShape` based on the constant value of the given `tensor`.
  """
  shape = tensor.get_shape().with_rank(1)
  if tensor.get_shape() == [0]:
    return tensor_shape.scalar()
  elif tensor.op.type == "Shape":
    return tensor.op.inputs[0].get_shape()
  elif tensor.op.type == "Pack":
    ret = tensor_shape.scalar()  # Empty list.
    for pack_input in tensor.op.inputs:
      # `pack_input` must be a scalar. Attempt to evaluate it, and append it
      # to `ret`.
      pack_input_val = constant_value(pack_input)
      if pack_input_val is None or pack_input_val < 0:
        new_dim = tensor_shape.Dimension(None)
      else:
        new_dim = tensor_shape.Dimension(pack_input_val)
      ret = ret.concatenate([new_dim])
    return ret
  elif tensor.op.type == "Concat":
    # We assume that `tensor.op.inputs[0]` evaluates to 0, as this is
    # the only legal value when concatenating vectors, and it will
    # have been checked by a previous shape function.
    ret = tensor_shape.scalar()  # Empty list.
    for concat_input in tensor.op.inputs[1:]:
      # `concat_input` must be a vector. Attempt to evaluate it as a shape,
      # and concatenate it with `ret`.
      ret = ret.concatenate(constant_value_as_shape(concat_input))
    return ret
  elif tensor.op.type == "ConcatV2":
    # We assume that `tensor.op.inputs[-1]` evaluates to 0, as this is
    # the only legal value when concatenating vectors, and it will
    # have been checked by a previous shape function.
    ret = tensor_shape.scalar()  # Empty list.
    for concat_input in tensor.op.inputs[:-1]:
      # `concat_input` must be a vector. Attempt to evaluate it as a shape,
      # and concatenate it with `ret`.
      ret = ret.concatenate(constant_value_as_shape(concat_input))
    return ret
  else:
    ret = tensor_shape.unknown_shape(shape[0].value)
    value = constant_value(tensor)
    if value is not None:
      ret = ret.merge_with(tensor_shape.TensorShape(
          [d if d != -1 else None for d in value]))
    return ret
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:60,代码来源:tensor_util.py

示例9: dropout_selu_impl

    def dropout_selu_impl(x, rate, alpha, noise_shape, seed, name):
        keep_prob = 1.0 - rate
        x = ops.convert_to_tensor(x, name="x")
        if isinstance(keep_prob, numbers.Real) and not 0. < keep_prob <= 1.:
            raise ValueError("keep_prob must be a scalar tensor or a float in the "
                                             "range (0, 1], got %g" % keep_prob)
        keep_prob = ops.convert_to_tensor(keep_prob, dtype=x.dtype, name="keep_prob")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        alpha = ops.convert_to_tensor(alpha, dtype=x.dtype, name="alpha")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        if tensor_util.constant_value(keep_prob) == 1:
            return x

        noise_shape = noise_shape if noise_shape is not None else array_ops.shape(x)
        random_tensor = keep_prob
        random_tensor += random_ops.random_uniform(noise_shape, seed=seed, dtype=x.dtype)
        binary_tensor = math_ops.floor(random_tensor)
        ret = x * binary_tensor + alpha * (1-binary_tensor)

        a = tf.sqrt(fixedPointVar / (keep_prob *((1-keep_prob) * tf.pow(alpha-fixedPointMean,2) + fixedPointVar)))

        b = fixedPointMean - a * (keep_prob * fixedPointMean + (1 - keep_prob) * alpha)
        ret = a * ret + b
        ret.set_shape(x.get_shape())
        return ret
开发者ID:waxz,项目名称:ppo_torcs,代码行数:27,代码来源:selu.py

示例10: testDropStaleUpdate

  def testDropStaleUpdate(self):
    with self.test_session() as sess:
      accumulator = stats_accumulator_ops.StatsAccumulator(
          stamp_token=0,
          gradient_shape=tensor_shape.scalar(),
          hessian_shape=tensor_shape.scalar())
      with ops.control_dependencies([accumulator._create_op]):
        op1 = accumulator.add(
            stamp_token=0,
            partition_ids=[1, 2],
            feature_ids=[[2, 0], [3, 0]],
            gradients=[0.1, 0.3],
            hessians=[0.2, 0.4])
        op2 = accumulator.add(
            stamp_token=-1,
            partition_ids=[1],
            feature_ids=[[2, 0]],
            gradients=[0.1],
            hessians=[0.2])

      with ops.control_dependencies([op1, op2]):
        num_updates, partition, feature, grads, hessians = accumulator.flush(
            stamp_token=0, next_stamp_token=1)
        num_updates, partition, feature, grads, hessians = sess.run(
            [num_updates, partition, feature, grads, hessians])

      result = _AccumulatorResultToDict(partition, feature, grads, hessians)
      self.assertEqual(num_updates, 1)
      self.assertEqual(len(result), 2)
      self.assertAllClose(result[(1, 2, 0)], [0.1, 0.2])
      self.assertAllClose(result[(2, 3, 0)], [0.3, 0.4])
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:31,代码来源:stats_accumulator_ops_test.py

示例11: testSkipEagerBuildElementShape

 def testSkipEagerBuildElementShape(self):
   fn = list_ops._build_element_shape
   # Unknown shape -> -1.
   self.assertEqual(fn(None), -1)
   self.assertEqual(fn(tensor_shape.unknown_shape()), -1)
   # Scalar shape -> [] with type int32.
   self.assertEqual(fn([]).dtype, dtypes.int32)
   self.assertEqual(fn(tensor_shape.scalar()).dtype, dtypes.int32)
   self.assertAllEqual(self.evaluate(fn([])), np.array([], np.int32))
   self.assertAllEqual(
       self.evaluate(fn(tensor_shape.scalar())), np.array([], np.int32))
   # Tensor -> Tensor
   shape = constant_op.constant(1)
   self.assertIs(fn(shape), shape)
   # Shape with unknown dims -> shape list with -1's.
   shape = [None, 5]
   self.assertAllEqual(fn(shape), [-1, 5])
   self.assertAllEqual(fn(tensor_shape.TensorShape(shape)), [-1, 5])
   # Shape with unknown dims and tensor dims -> shape list with -1's and tensor
   # dims.
   t = array_ops.placeholder(dtypes.int32)
   shape = [None, 5, t]
   result = fn(shape)
   self.assertAllEqual(result[:2], [-1, 5])
   self.assertIs(result[2], t)
开发者ID:aeverall,项目名称:tensorflow,代码行数:25,代码来源:list_ops_test.py

示例12: _ReaderReadShape

def _ReaderReadShape(op):
  """Shape function for the ReaderBase.Read op."""
  unused_handle_shape = op.inputs[0].get_shape().merge_with(
      tensor_shape.scalar())
  unused_queue_shape = op.inputs[1].get_shape().merge_with(
      tensor_shape.scalar())
  return [tensor_shape.scalar(), tensor_shape.scalar()]
开发者ID:ray2020,项目名称:tensorflow,代码行数:7,代码来源:io_ops.py

示例13: _TensorArraySplitShape

def _TensorArraySplitShape(op):
    # handle, value, lengths, flow_in
    op.inputs[0].get_shape().merge_with(tensor_shape.vector(2))
    op.inputs[2].get_shape().merge_with(tensor_shape.vector(None))
    op.inputs[3].get_shape().merge_with(tensor_shape.scalar())
    # flow_out
    return [tensor_shape.scalar()]
开发者ID:MISingularity,项目名称:tensorflow,代码行数:7,代码来源:tensor_array_ops.py

示例14: _RestoreShape

def _RestoreShape(op):
  """Shape function for Restore op."""
  # Validate input shapes.
  unused_file_pattern = op.inputs[0].get_shape().merge_with(
      tensor_shape.scalar())
  unused_tensor_name = op.inputs[1].get_shape().merge_with(
      tensor_shape.scalar())
  return [tensor_shape.unknown_shape()]
开发者ID:ray2020,项目名称:tensorflow,代码行数:8,代码来源:io_ops.py

示例15: _RestoreSliceShape

def _RestoreSliceShape(op):
    """Shape function for RestoreSlice op."""
    # Validate input shapes.
    unused_file_pattern = op.inputs[0].get_shape().merge_with(tensor_shape.scalar())
    unused_tensor_name = op.inputs[1].get_shape().merge_with(tensor_shape.scalar())
    unused_shape_and_slice_shape = op.inputs[2].get_shape().merge_with(tensor_shape.scalar())
    # TODO(mrry): Attempt to parse the shape_and_slice value and use it
    # to form the shape of the output.
    return [tensor_shape.unknown_shape()]
开发者ID:RChandrasekar,项目名称:tensorflow,代码行数:9,代码来源:io_ops.py


注:本文中的tensorflow.python.framework.tensor_shape.scalar函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。