本文整理汇总了Python中tensorflow.python.framework.tensor_shape.matrix函数的典型用法代码示例。如果您正苦于以下问题:Python matrix函数的具体用法?Python matrix怎么用?Python matrix使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了matrix函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _ParseSingleSequenceExampleShape
def _ParseSingleSequenceExampleShape(op):
"""Shape function for the ParseExample op."""
op.inputs[0].get_shape().with_rank(0) # input
# feature_list_dense_missing_assumed_empty
op.inputs[1].get_shape().with_rank(1)
num_context_sparse = op.get_attr("Ncontext_sparse")
num_context_dense = op.get_attr("Ncontext_dense")
num_feature_list_dense = op.get_attr("Nfeature_list_dense")
context_dense_shapes = op.get_attr("context_dense_shapes")
num_feature_list_sparse = op.get_attr("Nfeature_list_sparse")
feature_list_dense_shapes = op.get_attr("feature_list_dense_shapes")
context_sparse_index_shapes = [tensor_shape.matrix(None, 1) for _ in range(num_context_sparse)]
context_sparse_value_shapes = [tensor_shape.vector(None) for _ in range(num_context_sparse)]
context_sparse_shape_shapes = [tensor_shape.vector(1) for _ in range(num_context_sparse)]
context_dense_shapes = [tensor_shape.TensorShape(dense_shape) for dense_shape in context_dense_shapes]
feature_list_sparse_index_shapes = [tensor_shape.matrix(None, 2) for _ in range(num_feature_list_sparse)]
feature_list_sparse_value_shapes = [tensor_shape.vector(None) for _ in range(num_feature_list_sparse)]
feature_list_sparse_shape_shapes = [tensor_shape.vector(2) for _ in range(num_feature_list_sparse)]
feature_list_dense_shapes = [
tensor_shape.vector(None).concatenate(dense_shape) for dense_shape in feature_list_dense_shapes
]
assert num_context_dense == len(context_dense_shapes)
assert num_feature_list_dense == len(feature_list_dense_shapes)
return (
context_sparse_index_shapes
+ context_sparse_value_shapes
+ context_sparse_shape_shapes
+ context_dense_shapes
+ feature_list_sparse_index_shapes
+ feature_list_sparse_value_shapes
+ feature_list_sparse_shape_shapes
+ feature_list_dense_shapes
)
示例2: testShapes
def testShapes(self):
fdef = self._build_function_def()
g = function_def_to_graph.function_def_to_graph(fdef)
self.assertIsNone(g.inputs[0].shape.dims) # Unknown dims.
self.assertIsNone(g.inputs[1].shape.dims) # Unknown dims.
self.assertIsNone(g.outputs[0].shape.dims) # Unknown dims.
self.assertIsNone(g.outputs[1].shape.dims) # Unknown dims.
g = function_def_to_graph.function_def_to_graph(
fdef, input_shapes=[tensor_shape.vector(5),
tensor_shape.vector(5)])
self.assertSequenceEqual(g.inputs[0].shape.dims, [5])
self.assertSequenceEqual(g.inputs[1].shape.dims, [5])
self.assertSequenceEqual(g.outputs[0].shape.dims, [5])
self.assertSequenceEqual(g.outputs[1].shape.dims, [5])
g = function_def_to_graph.function_def_to_graph(
fdef, input_shapes=[None, tensor_shape.matrix(5, 7)])
self.assertIsNone(g.inputs[0].shape.dims)
self.assertSequenceEqual(g.inputs[1].shape.dims, [5, 7])
self.assertSequenceEqual(g.outputs[0].shape.dims, [5, 7])
self.assertSequenceEqual(g.outputs[1].shape.dims, [5, 7])
# Should raise a ValueError if the length of input_shapes does not match
# the number of input args in FunctionDef.signature.input_arg.
with self.assertRaises(ValueError):
g = function_def_to_graph.function_def_to_graph(
fdef, input_shapes=[tensor_shape.matrix(5, 7)])
示例3: _CTCGreedyDecoderShape
def _CTCGreedyDecoderShape(op):
"""Shape function for the CTCGreedyDecoder op."""
inputs_shape = op.inputs[0].get_shape().with_rank(3)
sequence_length_shape = op.inputs[1].get_shape().with_rank(1)
# merge batch_size
sequence_length_shape[0].merge_with(inputs_shape[1])
inputs_shape[1].merge_with(sequence_length_shape[0])
batch_size = inputs_shape[1]
# decoded_indices, decoded_values, decoded_shape, log_probability
return [tensor_shape.matrix(None, 2),
tensor_shape.vector(None),
tensor_shape.vector(2),
tensor_shape.matrix(batch_size, 1)]
示例4: _SparseConcatShape
def _SparseConcatShape(op):
"""Shape function for SparseConcat op."""
num_inputs = int(op.get_attr("N"))
# TF flattens and concatenates all list inputs, so reconstruct the lists here.
ind_shapes = [ind.get_shape().with_rank(2) for ind in op.inputs[0:num_inputs]]
val_shapes = [val.get_shape().with_rank(1)
for val in op.inputs[num_inputs:2 * num_inputs]]
shape_shapes = [shape.get_shape().with_rank(1)
for shape in op.inputs[2 * num_inputs:]]
output_ind_rows = tensor_shape.Dimension(0)
output_ind_cols = tensor_shape.Dimension(None)
output_val_elems = tensor_shape.Dimension(0)
output_shape_shape = tensor_shape.TensorShape(None)
for i in xrange(num_inputs):
num_elems_i = ind_shapes[i][0].merge_with(val_shapes[i][0])
output_ind_rows += num_elems_i
output_ind_cols = output_ind_cols.merge_with(ind_shapes[i][1])
output_val_elems += num_elems_i
output_shape_shape = output_shape_shape.merge_with(shape_shapes[i])
output_ind_shape = tensor_shape.matrix(output_ind_rows, output_ind_cols)
output_val_shape = tensor_shape.vector(output_val_elems)
return [output_ind_shape, output_val_shape, output_shape_shape]
示例5: _SerializeManySparseShape
def _SerializeManySparseShape(op): # pylint: disable=invalid-name
"""Shape function for SerializeSparse op."""
op.inputs[0].get_shape().with_rank(2)
op.inputs[1].get_shape().with_rank(1)
op.inputs[2].get_shape().with_rank(1)
return [tensor_shape.matrix(None, 3)]
示例6: _ComputeAccidentalHitsShape
def _ComputeAccidentalHitsShape(op):
num_true = op.get_attr("num_true")
# Validate that the input shape matches the attrs, even though it
# does not influence the shape of the output.
true_candidates_shape = op.inputs[0].get_shape().merge_with(tensor_shape.matrix(None, num_true))
output_shape = tensor_shape.vector(None)
return [output_shape] * 3
示例7: testHelpers
def testHelpers(self):
tensor_shape.TensorShape([]).assert_is_compatible_with(
tensor_shape.scalar())
tensor_shape.TensorShape([37]).assert_is_compatible_with(
tensor_shape.vector(37))
tensor_shape.TensorShape(
[94, 43]).assert_is_compatible_with(tensor_shape.matrix(94, 43))
示例8: _reverse_seq
def _reverse_seq(input_seq, lengths):
"""Reverse a list of Tensors up to specified lengths.
Args:
input_seq: Sequence of seq_len tensors of dimension (batch_size, depth)
lengths: A tensor of dimension batch_size, containing lengths for each
sequence in the batch. If "None" is specified, simply reverses
the list.
Returns:
time-reversed sequence
"""
if lengths is None:
return list(reversed(input_seq))
input_shape = tensor_shape.matrix(None, None)
for input_ in input_seq:
input_shape.merge_with(input_.get_shape())
input_.set_shape(input_shape)
# Join into (time, batch_size, depth)
s_joined = array_ops.pack(input_seq)
# TODO(schuster, ebrevdo): Remove cast when reverse_sequence takes int32
if lengths is not None:
lengths = math_ops.to_int64(lengths)
# Reverse along dimension 0
s_reversed = array_ops.reverse_sequence(s_joined, lengths, 0, 1)
# Split again into list
result = array_ops.unpack(s_reversed)
for r in result:
r.set_shape(input_shape)
return result
示例9: _CandidateSamplerShape
def _CandidateSamplerShape(op):
true_classes_shape = op.inputs[0].get_shape().with_rank(2)
batch_size = true_classes_shape[0]
num_sampled = op.get_attr("num_sampled")
num_true = op.get_attr("num_true")
return [tensor_shape.vector(num_sampled),
tensor_shape.matrix(batch_size, num_true),
tensor_shape.vector(num_sampled)]
示例10: _DeserializeSparseShape
def _DeserializeSparseShape(op): # pylint: disable=invalid-name
"""Shape function for DeserializeManySparse op."""
serialized_sparse_shape = op.inputs[0].get_shape().with_rank(2)
serialized_sparse_shape.merge_with(
tensor_shape.TensorShape([None, 3]))
return [tensor_shape.matrix(None, None),
tensor_shape.vector(None),
tensor_shape.vector(None)]
示例11: _SparseTensorDenseMatMulShape
def _SparseTensorDenseMatMulShape(op): # pylint: disable=invalid-name
"""Shape function for SparseTensorDenseMatMul op."""
adjoint_b = op.get_attr("adjoint_b")
op.inputs[0].get_shape().assert_has_rank(2) # a_indices
op.inputs[1].get_shape().assert_has_rank(1) # a_values
op.inputs[2].get_shape().merge_with(tensor_shape.vector(2)) # a_shape
b_shape = op.inputs[3].get_shape().with_rank(2)
output_shape_right = b_shape[0] if adjoint_b else b_shape[1]
return [tensor_shape.matrix(None, output_shape_right)]
示例12: _CTCBeamSearchDecoderShape
def _CTCBeamSearchDecoderShape(op):
"""Shape function for the CTCBeamSearchDecoder op."""
inputs_shape = op.inputs[0].get_shape().with_rank(3)
sequence_length_shape = op.inputs[1].get_shape().with_rank(1)
# merge batch size
sequence_length_shape[0].merge_with(inputs_shape[1])
inputs_shape[1].merge_with(sequence_length_shape[0])
batch_size = inputs_shape[1]
top_paths = op.get_attr("top_paths")
# first the decoded indices
output_shapes = [tensor_shape.matrix(None, 2) for _ in range(top_paths)]
# next the decoded values
output_shapes.extend([tensor_shape.vector(None) for _ in range(top_paths)])
# the shapes of the decoded values
output_shapes.extend([tensor_shape.vector(2)] * top_paths)
# the log_probability matrix
output_shapes.append(tensor_shape.matrix(batch_size, top_paths))
return output_shapes
示例13: testStr
def testStr(self):
self.assertEqual("<unknown>", str(tensor_shape.unknown_shape()))
self.assertEqual("(?,)", str(tensor_shape.unknown_shape(ndims=1)))
self.assertEqual("(?, ?)", str(tensor_shape.unknown_shape(ndims=2)))
self.assertEqual("(?, ?, ?)", str(tensor_shape.unknown_shape(ndims=3)))
self.assertEqual("()", str(tensor_shape.scalar()))
self.assertEqual("(7,)", str(tensor_shape.vector(7)))
self.assertEqual("(3, 8)", str(tensor_shape.matrix(3, 8)))
self.assertEqual("(4, 5, 2)", str(tensor_shape.TensorShape([4, 5, 2])))
self.assertEqual("(32, ?, 1, 9)",
str(tensor_shape.TensorShape([32, None, 1, 9])))
示例14: _ParseExampleShape
def _ParseExampleShape(op):
"""Shape function for the ParseExample op."""
input_shape = op.inputs[0].get_shape().with_rank(1)
op.inputs[1].get_shape().with_rank(1) # names
num_sparse = op.get_attr("Nsparse")
num_dense = op.get_attr("Ndense")
dense_shapes = op.get_attr("dense_shapes")
sparse_index_shapes = [tensor_shape.matrix(None, 2) for _ in range(num_sparse)]
sparse_value_shapes = [tensor_shape.vector(None) for _ in range(num_sparse)]
sparse_shape_shapes = [tensor_shape.vector(2) for _ in range(num_sparse)]
assert num_dense == len(dense_shapes)
dense_shapes = [input_shape.concatenate(dense_shape) for dense_shape in dense_shapes]
return sparse_index_shapes + sparse_value_shapes + sparse_shape_shapes + dense_shapes
示例15: testBroadcast_many_dimensions
def testBroadcast_many_dimensions(self):
unknown = tensor_shape.unknown_shape()
shape_0 = tensor_shape.scalar()
shape_1 = tensor_shape.vector(1)
shape_4 = tensor_shape.vector(4)
shape_1x4 = tensor_shape.matrix(1, 4)
shape_4x1 = tensor_shape.matrix(4, 1)
shape_3x4 = tensor_shape.matrix(3, 4)
shape_4x3 = tensor_shape.matrix(4, 3)
# Tensors with same shape should have the same broadcast result.
for shape in (
shape_0, shape_1, shape_4, shape_1x4, shape_4x1, shape_3x4, shape_4x3):
self._assert_broadcast(expected=shape, shape1=shape, shape2=shape)
# [] and [1] act like identity.
for identity in (shape_0, shape_1):
for shape in (shape_4, shape_1x4, shape_4x1, shape_3x4, shape_4x3):
self._assert_broadcast(expected=shape, shape1=identity, shape2=shape)
# Unknown in, unknown out.
for shape in (shape_4, shape_1x4, shape_4x1, shape_3x4, shape_4x3):
self._assert_broadcast(expected=unknown, shape1=shape, shape2=unknown)
self._assert_broadcast(expected=shape_1x4, shape1=shape_4, shape2=shape_1x4)
shape_4x4 = tensor_shape.matrix(4, 4)
self._assert_broadcast(expected=shape_4x4, shape1=shape_4, shape2=shape_4x1)
self._assert_broadcast(expected=shape_3x4, shape1=shape_4, shape2=shape_3x4)
self._assert_incompatible_broadcast(shape1=shape_4, shape2=shape_4x3)
self._assert_broadcast(
expected=shape_4x4, shape1=shape_1x4, shape2=shape_4x1)
self._assert_broadcast(
expected=shape_3x4, shape1=shape_1x4, shape2=shape_3x4)
self._assert_incompatible_broadcast(shape1=shape_1x4, shape2=shape_4x3)
self._assert_incompatible_broadcast(shape1=shape_4x1, shape2=shape_3x4)
self._assert_broadcast(
expected=shape_4x3, shape1=shape_4x1, shape2=shape_4x3)
self._assert_incompatible_broadcast(shape1=shape_3x4, shape2=shape_4x3)