本文整理汇总了Python中tensorflow.python.framework.tensor_shape.is_fully_defined函数的典型用法代码示例。如果您正苦于以下问题:Python is_fully_defined函数的具体用法?Python is_fully_defined怎么用?Python is_fully_defined使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了is_fully_defined函数的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: with_same_shape
def with_same_shape(expected_tensor, tensor):
"""Assert tensors are the same shape, from the same graph.
Args:
expected_tensor: Tensor with expected shape.
tensor: Tensor of actual values.
Returns:
The original tensor argument, possibly with assert ops added.
"""
with ops.name_scope('%s/' % tensor.op.name, values=[expected_tensor, tensor]):
tensor_shape = expected_tensor.get_shape()
expected_shape = (
tensor_shape.as_list() if tensor_shape.is_fully_defined()
else array_ops.shape(expected_tensor, name='expected_shape'))
return with_shape(expected_shape, tensor)
示例2: _AggregatedGrads
def _AggregatedGrads(grads, op, loop_state, aggregation_method=None):
"""Get the aggregated gradients for op.
Args:
grads: The map of memoized gradients.
op: The op to get gradients for.
loop_state: An object for maintaining the state of the while loops in the
graph. It is of type ControlFlowState. None if the graph
contains no while loops.
aggregation_method: Specifies the method used to combine gradient terms.
Accepted values are constants defined in the class `AggregationMethod`.
Returns:
A list of gradients, one per each output of `op`. If the gradients
for a particular output is a list, this function aggregates it
before returning.
Raises:
TypeError: if the incoming grads are not Tensors or IndexedSlices.
ValueError: if the arguments are invalid.
"""
if aggregation_method is None:
aggregation_method = AggregationMethod.DEFAULT
if aggregation_method not in [
AggregationMethod.ADD_N, AggregationMethod.EXPERIMENTAL_TREE,
AggregationMethod.EXPERIMENTAL_ACCUMULATE_N
]:
raise ValueError("Invalid aggregation_method specified %s." %
aggregation_method)
out_grads = _GetGrads(grads, op)
for i, out_grad in enumerate(out_grads):
if loop_state:
if isinstance(out_grad, (ops.Tensor, ops.IndexedSlices)):
assert control_flow_ops.IsLoopSwitch(op)
continue
# Grads have to be Tensors or IndexedSlices
if (isinstance(out_grad, collections.Sequence) and not all([
isinstance(g, (ops.Tensor, ops.IndexedSlices)) for g in out_grad
if g is not None
])):
raise TypeError("gradients have to be either all Tensors "
"or all IndexedSlices")
# Aggregate multiple gradients, and convert [] to None.
if out_grad:
if len(out_grad) < 2:
used = "nop"
out_grads[i] = out_grad[0]
elif all([isinstance(g, ops.Tensor) for g in out_grad if g is not None]):
tensor_shape = _AccumulatorShape(out_grad)
if (aggregation_method == AggregationMethod.EXPERIMENTAL_ACCUMULATE_N
and len(out_grad) > 2 and tensor_shape.is_fully_defined()):
# The benefit of using AccumulateN is that its inputs can be combined
# in any order and this can allow the expression to be evaluated with
# a smaller memory footprint. When used with gpu_allocator_retry,
# it is possible to compute a sum of terms which are much larger than
# total GPU memory.
# AccumulateN can currently only be used if we know the shape for
# an accumulator variable. If this is not known, or if we only have
# 2 grads then we fall through to the "tree" case below.
used = "accumulate_n"
out_grads[i] = math_ops.accumulate_n(out_grad)
elif aggregation_method in [
AggregationMethod.EXPERIMENTAL_TREE,
AggregationMethod.EXPERIMENTAL_ACCUMULATE_N
]:
# Aggregate all gradients by doing pairwise sums: this may
# reduce performance, but it can improve memory because the
# gradients can be released earlier.
#
# TODO(vrv): Consider replacing this with a version of
# tf.AddN() that eagerly frees its inputs as soon as they are
# ready, so the order of this tree does not become a problem.
used = "tree"
with ops.name_scope(op.name + "_gradient_sum"):
running_sum = out_grad[0]
for grad in out_grad[1:]:
running_sum = math_ops.add_n([running_sum, grad])
out_grads[i] = running_sum
else:
used = "add_n"
out_grads[i] = _MultiDeviceAddN(out_grad)
logging.vlog(2, " _AggregatedGrads %d x %s using %s",
len(out_grad), tensor_shape, used)
else:
out_grad = math_ops._as_indexed_slices_list(
[g for g in out_grad if g is not None])
out_grad = [_HandleNestedIndexedSlices(x) for x in out_grad]
# Form IndexedSlices out of the concatenated values and
# indices.
out_grads[i] = ops.IndexedSlices(
array_ops.concat_v2([x.values for x in out_grad], 0),
array_ops.concat_v2([x.indices for x in out_grad], 0),
out_grad[0].dense_shape)
else:
out_grads[i] = []
return out_grads